Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 20 Jun 2012
Posts: 102
Location: United States
Concentration: Finance, Operations

Re: The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
12 Jun 2013, 05:15
Bunuel wrote: stunn3r wrote: kirankp wrote: The sum of the first n positive perfect squares, where n is a positive integer, is given by the formula \(\frac{n^3}{3} + c*n^2 + \frac{n}{6}\), where \(c\) is a constant. What is the sum of the first 15 positive perfect squares?
(A) 1,010 (B) 1,164 (C) 1,240 (D) 1,316 (E) 1,476 First of all there is a direct formula also provided above by bunuel i.e. [(n)(n+1)(2n+1)]/6 now if we do not know this and directly put 15 in place of N .. It'll come >> 15[225/3+15c+1/6] = 15[(451+90c)/6] = 5[(451 + 90c)/2] .. now (450 + 90c) should be an even integer so that it should get divisible by 2, that figured out c has to be in fraction and as (450 + 90c) is an even integer answer should have "0" in the last(because it'll be multiplied by "5" outside [ ] ) .. we can eliminate B,D,E ryt away .. for choosing between A and C. I took 1/2 as my first no. and bingo I got the answer :D Note that OA is C, not D. Check here: thesumofthefirstnpositiveperfectsquareswherenis90497.html#p831532Hope it helps. hahahahaha .. that was the funnies confusion .. I guess you are not much into texting that ":D" was a smiley like this >>
_________________
Forget Kudos ... be an altruist



Manager
Joined: 04 Mar 2013
Posts: 88
Location: India
Concentration: General Management, Marketing
GPA: 3.49
WE: Web Development (Computer Software)

Re: The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
03 Jul 2013, 10:30
kirankp wrote: The sum of the first n positive perfect squares, where n is a positive integer, is given by the formula \(\frac{n^3}{3} + c*n^2 + \frac{n}{6}\), where \(c\) is a constant. What is the sum of the first 15 positive perfect squares?
(A) 1,010 (B) 1,164 (C) 1,240 (D) 1,316 (E) 1,476 traditional way: put n = 1 and find c and then now substitute 15 but if u know the formula for sum of squares of n natural number (n) x (n+1 )x (2n+1 )/ 6 now directly keep n  15



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15988

Re: The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
09 Jul 2014, 02:44
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Intern
Joined: 23 Mar 2015
Posts: 10
Location: India
Concentration: Operations, Technology
GMAT 1: 690 Q49 V34 GMAT 2: 700 Q49 V35

Re: The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
12 May 2015, 21:26
Another thought. Sum mentioned in question must NOT be a decimal. Here 15*15*15/3 = 1125, 15*15*C = 225*C, 15/6 = 2.5 which means 225*C must give a .5 after decimal part so that when it gets added up with 2.5 we will get a round number. Based on the answer choices C=0.5 should be a fit,so went for that and selected the answer (1125 + 112.5 + 2.5 = 1240)



Director
Status: Tutor  BrushMyQuant
Joined: 05 Apr 2011
Posts: 619
Location: India
Concentration: Finance, Marketing
GMAT 1: 570 Q49 V19 GMAT 2: 700 Q51 V31
GPA: 3
WE: Information Technology (Computer Software)

The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
28 May 2015, 02:46



CEO
Joined: 17 Jul 2014
Posts: 2524
Location: United States (IL)
Concentration: Finance, Economics
GPA: 3.92
WE: General Management (Transportation)

Re: The sum of the first n positive perfect squares, where n is [#permalink]
Show Tags
30 Mar 2016, 18:56
to be honest..it was easier for me to list all the first 15 perfect square and add them up.. i got too messy with the formula.. first perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225.
we can add up units, and see that the last digit must be 0. we can eliminate all but A and C. i grouped the numbers to make the addition easier 4+196=200 1+9=10 25+225=250 169+121=290 36+64+100=200 16+144=160 49+81 = 130 200+200+130+160+10+290+250=400+290+300+250 = XX40 last 2 digits, so C,




Re: The sum of the first n positive perfect squares, where n is
[#permalink]
30 Mar 2016, 18:56



Go to page
Previous
1 2
[ 26 posts ]




