It is currently 19 Nov 2017, 03:20

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The sum of the integers in list S is the same as the sum of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7736

Kudos [?]: 17790 [1], given: 235

Location: Pune, India
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 30 Oct 2013, 20:00
1
This post received
KUDOS
Expert's post
fozzzy wrote:
Hi Bunuel,

For this question if the stem stated that all the integers are positive would the answer be A?


Yes, if the integers are positive, the sum would be positive too. Then statement (A) alone would be sufficient.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17790 [1], given: 235

Intern
Intern
avatar
Joined: 09 Mar 2014
Posts: 6

Kudos [?]: [0], given: 10

Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 15 Apr 2014, 00:21
Brunel,

Thank you for all your help. Brilliant stuff!

I have a concern on this one... I had marked the answer as E on GMATPrep but as per the answers on it the correct answer is A, and obviously the software will consider these answers when calculating your score. How exactly or to what extend can we rely on the score thrown up by the test if they have wrong answers on the software to begin with? It's causing a conflict. Please help.

Thank you.

Kudos [?]: [0], given: 10

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42249

Kudos [?]: 132650 [0], given: 12329

Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 15 Apr 2014, 00:59
rupshadas wrote:
Brunel,

Thank you for all your help. Brilliant stuff!

I have a concern on this one... I had marked the answer as E on GMATPrep but as per the answers on it the correct answer is A, and obviously the software will consider these answers when calculating your score. How exactly or to what extend can we rely on the score thrown up by the test if they have wrong answers on the software to begin with? It's causing a conflict. Please help.

Thank you.


Actually there aren't that many flawed questions in GMAT Prep and they remove one when spot it. I remember only 3 or 4 wrong questions in different editions, so generally their score is accurate.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132650 [0], given: 12329

Intern
Intern
avatar
Joined: 04 May 2013
Posts: 8

Kudos [?]: 1 [0], given: 6

Schools: Yale '17
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 01 Jul 2014, 00:26
Bunuel wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

Given: \(sum(S)=sum(T)\). Question: is \(t<s\), where \(s\) and \(t\) are # of integers in lists S and T respectively.

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T --> \(\frac{sum}{s}<\frac{sum}{t}\) --> cross multiply: \(sum*t<sum*s\). Now, if \(sum<0\) then \(t>s\) (when reducing by negative flip the sign) but if \(sum>0\) then \(t<s\). not sufficient.

(2) The median of the integers in S is greater than the median of the integers in T. If S={1, 1} and T={0, 0, 2} then the median of S (1) is greater than the median of T (0) and S contains less elements than T but if S={-1, -1, -1} and T={-3, 0} then the median of S (-1) is greater than the median of T (-1.5) and S contains more elements than T. Not sufficient.

(1)+(2):
If S={-1, 2, 2} and T={1, 2} then the sum is equal (3), the average of S (1) is less than the average of T (1.5), the median of S (2) is greater than the median of T (1.5) and S contains more elements than T.

If S={-2, -1} and T={-2, -2, 1} then the sum is equal (-3), the average of S (-1.5) is less than the average of T (-1), the median of S (-1.5) is greater than the median of T (-2) and S contains less elements than T.

Not sufficient.

Answer: E.



I am not understanding, because I got this same question in GMAT prep & ans indicated by them is A. And I am also unclear as why A. So is there something I am missing or the above explanation has something missing??

Kudos [?]: 1 [0], given: 6

Expert Post
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7736

Kudos [?]: 17790 [0], given: 235

Location: Pune, India
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 01 Jul 2014, 00:32
patternpandora wrote:
Bunuel wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

Given: \(sum(S)=sum(T)\). Question: is \(t<s\), where \(s\) and \(t\) are # of integers in lists S and T respectively.

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T --> \(\frac{sum}{s}<\frac{sum}{t}\) --> cross multiply: \(sum*t<sum*s\). Now, if \(sum<0\) then \(t>s\) (when reducing by negative flip the sign) but if \(sum>0\) then \(t<s\). not sufficient.

(2) The median of the integers in S is greater than the median of the integers in T. If S={1, 1} and T={0, 0, 2} then the median of S (1) is greater than the median of T (0) and S contains less elements than T but if S={-1, -1, -1} and T={-3, 0} then the median of S (-1) is greater than the median of T (-1.5) and S contains more elements than T. Not sufficient.

(1)+(2):
If S={-1, 2, 2} and T={1, 2} then the sum is equal (3), the average of S (1) is less than the average of T (1.5), the median of S (2) is greater than the median of T (1.5) and S contains more elements than T.

If S={-2, -1} and T={-2, -2, 1} then the sum is equal (-3), the average of S (-1.5) is less than the average of T (-1), the median of S (-1.5) is greater than the median of T (-2) and S contains less elements than T.

Not sufficient.

Answer: E.



I am not understanding, because I got this same question in GMAT prep & ans indicated by them is A. And I am also unclear as why A. So is there something I am missing or the above explanation has something missing??


As indicated by Bunuel in his post here: the-sum-of-the-integers-in-list-s-is-the-same-as-the-sum-of-127755.html#p1046371
the correct answer is (E).
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17790 [0], given: 235

Senior Manager
Senior Manager
avatar
Joined: 28 Apr 2014
Posts: 272

Kudos [?]: 40 [0], given: 46

GMAT ToolKit User
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 01 Jul 2014, 21:39
Bunuel wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

Given: \(sum(S)=sum(T)\). Question: is \(t<s\), where \(s\) and \(t\) are # of integers in lists S and T respectively.

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T --> \(\frac{sum}{s}<\frac{sum}{t}\) --> cross multiply: \(sum*t<sum*s\). Now, if \(sum<0\) then \(t>s\) (when reducing by negative flip the sign) but if \(sum>0\) then \(t<s\). not sufficient.

(2) The median of the integers in S is greater than the median of the integers in T. If S={1, 1} and T={0, 0, 2} then the median of S (1) is greater than the median of T (0) and S contains less elements than T but if S={-1, -1, -1} and T={-3, 0} then the median of S (-1) is greater than the median of T (-1.5) and S contains more elements than T. Not sufficient.

(1)+(2):
If S={-1, 2, 2} and T={1, 2} then the sum is equal (3), the average of S (1) is less than the average of T (1.5), the median of S (2) is greater than the median of T (1.5) and S contains more elements than T.

If S={-2, -1} and T={-2, -2, 1} then the sum is equal (-3), the average of S (-1.5) is less than the average of T (-1), the median of S (-1.5) is greater than the median of T (-2) and S contains less elements than T.

Not sufficient.

Answer: E.


As always your solutions are elegant and crisp Bunuel. I liked the thought process on 1. Any other way to work on option 2 ? I am a bit wary on putting in values. Any conceptual way to negate this option ?

Kudos [?]: 40 [0], given: 46

Intern
Intern
avatar
Joined: 04 May 2013
Posts: 8

Kudos [?]: 1 [0], given: 6

Schools: Yale '17
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 03 Jul 2014, 02:57
VeritasPrepKarishma wrote:
patternpandora wrote:
Bunuel wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

Given: \(sum(S)=sum(T)\). Question: is \(t<s\), where \(s\) and \(t\) are # of integers in lists S and T respectively.

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T --> \(\frac{sum}{s}<\frac{sum}{t}\) --> cross multiply: \(sum*t<sum*s\). Now, if \(sum<0\) then \(t>s\) (when reducing by negative flip the sign) but if \(sum>0\) then \(t<s\). not sufficient.

(2) The median of the integers in S is greater than the median of the integers in T. If S={1, 1} and T={0, 0, 2} then the median of S (1) is greater than the median of T (0) and S contains less elements than T but if S={-1, -1, -1} and T={-3, 0} then the median of S (-1) is greater than the median of T (-1.5) and S contains more elements than T. Not sufficient.

(1)+(2):
If S={-1, 2, 2} and T={1, 2} then the sum is equal (3), the average of S (1) is less than the average of T (1.5), the median of S (2) is greater than the median of T (1.5) and S contains more elements than T.

If S={-2, -1} and T={-2, -2, 1} then the sum is equal (-3), the average of S (-1.5) is less than the average of T (-1), the median of S (-1.5) is greater than the median of T (-2) and S contains less elements than T.

Not sufficient.

Answer: E.



I am not understanding, because I got this same question in GMAT prep & ans indicated by them is A. And I am also unclear as why A. So is there something I am missing or the above explanation has something missing??


As indicated by Bunuel in his post here: the-sum-of-the-integers-in-list-s-is-the-same-as-the-sum-of-127755.html#p1046371
the correct answer is (E).


I am attaching the screenshot indicating OA as A from Gmat Prep test

@Bunuel : Please guide further.
Attachments

File comment: Screenshot of Q from GMAT prep indicating OA : A
Screenshot 2014-07-03 15.23.16.png
Screenshot 2014-07-03 15.23.16.png [ 498.1 KiB | Viewed 1830 times ]

Kudos [?]: 1 [0], given: 6

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42249

Kudos [?]: 132650 [0], given: 12329

Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 03 Jul 2014, 03:36
patternpandora wrote:
VeritasPrepKarishma wrote:
patternpandora wrote:

I am not understanding, because I got this same question in GMAT prep & ans indicated by them is A. And I am also unclear as why A. So is there something I am missing or the above explanation has something missing??


As indicated by Bunuel in his post here: the-sum-of-the-integers-in-list-s-is-the-same-as-the-sum-of-127755.html#p1046371
the correct answer is (E).


I am attaching the screenshot indicating OA as A from Gmat Prep test

@Bunuel : Please guide further.


PLEASE READ THE WHOLE THREAD. THE OA FOR THIS QUESTION IS WRONG IN GMAT PREP.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132650 [0], given: 12329

Manager
Manager
User avatar
B
Joined: 22 Jan 2014
Posts: 141

Kudos [?]: 77 [0], given: 145

WE: Project Management (Computer Hardware)
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 06 Jul 2014, 08:37
Apex231 wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T.
(2) The median of the integers in S is greater than the median of the integers in T.



My take is E.

1) S = {1,2,3,4} ; avg = 2.5
T = {100,200} ; avg = 150
avg(T) > avg(S) and {S} > {T}

now

S = {1,2,3,4} ; avg = 2.5
T = {100,200,300,400,500} ; avg = 375
avg(T) > avg(S) and {T} > {S}

Hence A is not sufficient.

2) S = {1,2,3} ; median = 2
T = {1,2} ; median = 1.5
{S} > {T}

now

S = {1,2,3} ; median = 2
T = {-5,-4,-3,-2,-1} ; median = -3
{T} > {S}

Hence B is not sufficient

(A) + (B)

S = {1,2,3} ; median = 2
T = {-5,-4,-3,-2,1000} ; median = -3
avg(S) < avg(T) and {T} > {S}

now

S = {1,2,3,4,5,10000} ; median = 4
T = {-100, -3, 1000000} ; median = -3
avg(S) < avg(T) and {S} > {T}

Hence (A)+(B) is insufficient.
_________________

Illegitimi non carborundum.

Kudos [?]: 77 [0], given: 145

Intern
Intern
avatar
Joined: 04 Jun 2014
Posts: 48

Kudos [?]: 3 [0], given: 5

Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 30 Aug 2014, 06:30
Is it possible to do this in 2 minutes with inserting numbers like in Bunuel's explanation? :S Or is there another approach?
I always prefer to insert numbers, but it seems that it just takes far too long sometimes..

Kudos [?]: 3 [0], given: 5

Retired Moderator
avatar
Joined: 29 Oct 2013
Posts: 288

Kudos [?]: 489 [0], given: 197

Concentration: Finance
GPA: 3.7
WE: Corporate Finance (Retail Banking)
GMAT ToolKit User
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 06 Jan 2016, 06:22
The sum of integers in list S is the same as the sum of the integers in T. Does S contain more integers than T?
can we also interpret the above statement to mean that " s and t may also contain decimals along with integers but only sum of their integers is equal?" I am just trying to see how closely we should adhere to the language of the GMAC questions. Thanks
_________________

Please contact me for super inexpensive quality private tutoring

My journey V46 and 750 -> http://gmatclub.com/forum/my-journey-to-46-on-verbal-750overall-171722.html#p1367876

Kudos [?]: 489 [0], given: 197

Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7736

Kudos [?]: 17790 [2], given: 235

Location: Pune, India
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 06 Jan 2016, 22:26
2
This post received
KUDOS
Expert's post
NoHalfMeasures wrote:
The sum of integers in list S is the same as the sum of the integers in T. Does S contain more integers than T?
can we also interpret the above statement to mean that " s and t may also contain decimals along with integers but only sum of their integers is equal?" I am just trying to see how closely we should adhere to the language of the GMAC questions. Thanks



Yes, S and T may contain non-integers too. The question is only concerned about integers (Does S contain more INTEGERS that T?) and hence we don't really care about the other elements. The statements also only talk about integers.

Had the question been: "Does S contain more elements than T?"
we would have had to consider the possibility of non integer elements too.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17790 [2], given: 235

Expert Post
SVP
SVP
User avatar
G
Joined: 08 Jul 2010
Posts: 1847

Kudos [?]: 2340 [0], given: 51

Location: India
GMAT: INSIGHT
WE: Education (Education)
Reviews Badge
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 19 Jun 2017, 03:51
Apex231 wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T.
(2) The median of the integers in S is greater than the median of the integers in T.



Given, Sum of terms in S = Sum of terms in T

Is Number of terms in S > Number of terms in T?

Statement 1: Average of S < Average of T

i.e. (Sum of terms in S)/Number of terms in S < (Sum of terms in T)/Number of terms in T

i.e. (Sum of terms in S)* Number of terms in T < (Sum of terms in T)* Number of terms in S

If sum of terms in S is POSITIVE then it may be cancelled out from both sides and then
Number of terms in T < Number of terms in S

If sum of terms in S is NEGATIVE then it may be cancelled out from both sides but Inequality sign reverses i.e.
Number of terms in T > Number of terms in S

Hence NOT SUFFICIENT


Statement 2: Median of S > Median of T
But median have no relation with the sum of the terms in any set hence
NOT SUFFICIENT

Combining also doesn't give any solution as median has no relation with sum of terms and first statement is Insufficient as we don't know whether Sum of the terms of the Set S and T are positive or negative

Answer: option E
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Kudos [?]: 2340 [0], given: 51

Expert Post
Math Revolution GMAT Instructor
User avatar
P
Joined: 16 Aug 2015
Posts: 4318

Kudos [?]: 3037 [0], given: 0

GPA: 3.82
Premium Member CAT Tests
Re: The sum of the integers in list S is the same as the sum of [#permalink]

Show Tags

New post 07 Oct 2017, 00:12
Apex231 wrote:
The sum of the integers in list S is the same as the sum of the integers in list T. Does S contain more integers than T?

(1) The average (arithmetic mean) of the integers in S is less than the average of the integers in T.
(2) The median of the integers in S is greater than the median of the integers in T.


Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Sum(S) = Sum(T) ==> Q: #(S) > #(T)

There are 4 variables and 1 equation. Thus the answer E is most likely.

Actually, there is no relation between average and median.
The reason A is not an answer is that the sum could be positive or negative.

Let's consider both conditions 1) and 2) together.

S = { 1, 2, 3, 4 }
T = { 1, 2, 7 }
Sum = 1 + 2 + 3 + 4 = 1 + 2 + 7 = 10
ave(S) = 10/4 and ave(T) = 10/3
med(S) = 2.5 and med(T) = 2
S has more integers than T : Yes

S = { -1, -2, -7 }
T = { -1, -2, -3, -4 }
Sum = (-1)+(-2)+(-7) = (-1)+(-2)+(-3)+(-4) = -10
ave(S) = -10/3 and ave(T) = -10/4
med(S) = -2 and med(T) = -2.5
T has more integers than S : No.

The answer is not unique.

Therefore, the answer is E as expected.

For cases where we need 3 more equations, such as original conditions with “3 variables”, or “4 variables and 1 equation”, or “5 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 80 % chance that E is the answer, while C has 15% chance and A, B or D has 5% chance. Since E is most likely to be the answer using 1) and 2) together according to DS definition. Obviously there may be cases where the answer is A, B, C or D.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
“Receive 5 Math Questions & Solutions Daily”
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Kudos [?]: 3037 [0], given: 0

Re: The sum of the integers in list S is the same as the sum of   [#permalink] 07 Oct 2017, 00:12

Go to page   Previous    1   2   [ 34 posts ] 

Display posts from previous: Sort by

The sum of the integers in list S is the same as the sum of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.