MathRevolution wrote:
[
Math Revolution GMAT math practice question]
The terminal zeros of a number are the zeros to the right of its last nonzero digit. For example, 30,500 has two terminal zeros because there are two zeros to the right of its last nonzero digit, 5. How many terminal zeros does n! have?
\(1) n^2 – 15n + 50 < 0\)
\(2) n > 5\)
\(?\,\,\,:\,\,\,{\text{number}}\,\,{\text{of}}\,\,{\text{terminal}}\,\,{\text{zeros}}\,\,{\text{of}}\,\,n\,{\text{!}}\)
\(\left( 1 \right)\,\,\,{n^2} - 15n + 50 < 0\,\,\,\, \Leftrightarrow \,\,\,\,5 < n < 10\)
\(\left. \begin{gathered}
n! = 6! = 6 \cdot \boxed5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{6!}}{{10}} = \operatorname{int} \,\,\,\,\,{\text{but}}\,\,\,\,\,\frac{{6!}}{{{{10}^2}}} \ne \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 1\,\, \hfill \\
n! = 7! = 7 \cdot 6 \cdot \boxed5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{7!}}{{10}} = \operatorname{int} \,\,\,\,\,{\text{but}}\,\,\,\,\,\frac{{7!}}{{{{10}^2}}} \ne \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 1\,\, \hfill \\
n! = 8! = 8 \cdot 7 \cdot 6 \cdot \boxed5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{8!}}{{10}} = \operatorname{int} \,\,\,\,\,{\text{but}}\,\,\,\,\,\frac{{8!}}{{{{10}^2}}} \ne \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 1\, \hfill \\
n! = 9! = 9 \cdot 8 \cdot 7 \cdot 6 \cdot \boxed5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\,\,\,\,\, \Rightarrow \,\,\,\,\,\frac{{9!}}{{10}} = \operatorname{int} \,\,\,\,\,{\text{but}}\,\,\,\,\,\frac{{9!}}{{{{10}^2}}} \ne \operatorname{int} \,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 1\,\, \hfill \\
\end{gathered} \right\}\,\,\,\,\,\, \Rightarrow \,\,\,\,\,? = 1\)
\(\left( 2 \right)\,\,n > 5\,\,\,\,\,\left\{ \begin{gathered}
\,{\text{Take}}\,\,n = 6\,\,\,\, \Rightarrow \,\,\,? = 1\,\, \hfill \\
\,{\text{Take}}\,\,n = 10\,\, \Rightarrow \,\,{\text{?}}\,\,{\text{ = }}\,\,{\text{2}}\,\, \hfill \\
\end{gathered} \right.\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net