It is currently 21 Oct 2017, 03:47

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# There are 70 students in Math or English or German. Exactly 40 are in

Author Message
TAGS:

### Hide Tags

Manager
Joined: 18 Oct 2008
Posts: 187

Kudos [?]: 29 [1], given: 11

There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

21 Jul 2010, 02:43
1
KUDOS
2
This post was
BOOKMARKED
00:00

Difficulty:

(N/A)

Question Stats:

100% (00:30) correct 0% (00:00) wrong based on 7 sessions

### HideShow timer Statistics

There are 70 students in Math or English or German. Exactly 40 are in Math, 30 in German, 35 in English and 15 in all three courses. How many students are enrolled in exactly two of the courses? Math, English and German.

[Reveal] Spoiler:
OA given is 5

what is the significance of 'exactly' (Exactly 40 are in Math,
30 in German, 35 in English ) in the stem?

Kudos [?]: 29 [1], given: 11

Manager
Joined: 20 Jul 2010
Posts: 77

Kudos [?]: 77 [1], given: 32

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

21 Jul 2010, 03:45
1
KUDOS
I am getting answer as:50. Looks to me,exactly is a redundant word.

***
n(MUEUG) = n(M) + n(E) + n(G) - n(M & E) - n(E&G) - n(G&M) +n(M&E&G)

70 = 40 + 35+ 30 - n(M & E) - n(E&G) - n(G&M) + 15
Then, n(M & E) + n(E&G) + n(G&M) = 50.

So students who enrolled in two of the courses are: 50
***

Kudos [?]: 77 [1], given: 32

Ms. Big Fat Panda
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1915

Kudos [?]: 2204 [2], given: 210

Concentration: General Management, Nonprofit
Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

21 Jul 2010, 06:43
2
KUDOS
1
This post was
BOOKMARKED
I think the OA makes perfect sense. And you cannot just ignore the term exactly. Exactly two means that they are not enrolled in all three classes. The simplest way to extract info from what's given is to draw a Venn Diagram.

Attachment:
File comment: Venn Diagram

c73058.jpg [ 19.92 KiB | Viewed 2186 times ]

So, from this picture, we are asked to find out what $$x+y+z$$ is.

Let's look at given information and form the constraints:

Total = 70

$$x+y+z+a+b+c+15 = 70$$

$$(x+y+z) + (a+b+c) = 55$$

Total Math = 40

$$x+y+a+15 = 40$$

$$x+y = 25-a$$

Total German = 30

$$y+z+c+15 = 30$$

$$y+z = 15 -c$$

Total English = 35

$$x+z+b+15 = 35$$

$$x+z = 20-b$$

So now combining all the bolded equations regarding totals of each subject we get

$$2(x+y+z) = 15+25+20 - (a+b+c) = 60 - (a+b+c)$$

So $$(a+b+c) = 60 - 2(x+y+z)$$

Now substituting this into the first equation regarding total students, we get

$$(x+y+z) + 60 - 2(x+y+z) = 55$$

Hence $$x+y+z = 5$$

nravi4: The mistake you made in getting 50 is this. You counted the students enrolled in two of three subjects, but not strictly so. So your calculation includes the central space of 15 which is students enrolled in all three subjects for each subject you counted. So to get to the answer from your answer you need to do $$50 - (3*15) = 5$$

Hope this is clear.

Kudos [?]: 2204 [2], given: 210

Manager
Joined: 20 Jul 2010
Posts: 77

Kudos [?]: 77 [0], given: 32

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

21 Jul 2010, 07:38
Oho...yaaa..i missed the last step of subtracting 15 from M&E, E&G, G&M to match the work "Exactly" ...

Basically, the below is what the question is asking:

n(M & E) - n(M&E&G) + n(E&G) -n(M&E&G) + n(G&M) - n(M&E&G)

Cheers!
Ravi

Kudos [?]: 77 [0], given: 32

Manager
Joined: 20 Jul 2010
Posts: 185

Kudos [?]: 136 [3], given: 7

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

21 Jul 2010, 08:18
3
KUDOS
for venn diagrams in case of 3 cases:

Total = m(a) + m(b) + m(c) + m(a&b) + m(b&c) + m(c&a) - 2*m(a&b&c)
So, 70 = 40 + 30 + 35 - m(a&b) - m(b&c) - m(c&a) - 2*15
=> -35 = - [ m(a&b) + m(b&c) + m(c&a) ] - 30
Therefore, m(a&b) + m(b&c) + m(c&a) = 5
_________________

Gotta hit the 700 score this time... 3rd time lucky !
Give me some kudos... Like you, even I need them badly

Kudos [?]: 136 [3], given: 7

Manager
Joined: 18 Oct 2008
Posts: 187

Kudos [?]: 29 [0], given: 11

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

22 Jul 2010, 02:46
whiplash2411 wrote:
I think the OA makes perfect sense. And you cannot just ignore the term exactly. Exactly two means that they are not enrolled in all three classes. The simplest way to extract info from what's given is to draw a Venn Diagram.

Attachment:
c73058.jpg

So, from this picture, we are asked to find out what $$x+y+z$$ is.

Let's look at given information and form the constraints:

Total = 70

$$x+y+z+a+b+c+15 = 70$$

$$(x+y+z) + (a+b+c) = 55$$

Total Math = 40

$$x+y+a+15 = 40$$

$$x+y = 25-a$$

Total German = 30

$$y+z+c+15 = 30$$

$$y+z = 15 -c$$

Total English = 35

$$x+z+b+15 = 35$$

$$x+z = 20-b$$

So now combining all the bolded equations regarding totals of each subject we get

$$2(x+y+z) = 15+25+20 - (a+b+c) = 60 - (a+b+c)$$

So $$(a+b+c) = 60 - 2(x+y+z)$$

Now substituting this into the first equation regarding total students, we get

$$(x+y+z) + 60 - 2(x+y+z) = 55$$

Hence $$x+y+z = 5$$

nravi4: The mistake you made in getting 50 is this. You counted the students enrolled in two of three subjects, but not strictly so. So your calculation includes the central space of 15 which is students enrolled in all three subjects for each subject you counted. So to get to the answer from your answer you need to do $$50 - (3*15) = 5$$

Hope this is clear.

Hi

cant we take 'a' as 40 here as it is mentioned exactly 40 on math?

Kudos [?]: 29 [0], given: 11

Ms. Big Fat Panda
Status: Three Down.
Joined: 09 Jun 2010
Posts: 1915

Kudos [?]: 2204 [0], given: 210

Concentration: General Management, Nonprofit
Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

22 Jul 2010, 06:07
It says that exactly 40 are in math, not that 40 are in ONLY math. The people who take Math and English or Math and German or even all three are also in math, aren't they not? So you can't take a to be 40 since 40 is the sum of a,x, y and 15, i.e. people who take only Math, people who take Math and English, people who take Math and German and people who take all three. Hope this is clear.

Kudos [?]: 2204 [0], given: 210

Manager
Joined: 18 Oct 2008
Posts: 187

Kudos [?]: 29 [0], given: 11

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

22 Jul 2010, 08:35
whiplash2411 wrote:
It says that exactly 40 are in math, not that 40 are in ONLY math. The people who take Math and English or Math and German or even all three are also in math, aren't they not? So you can't take a to be 40 since 40 is the sum of a,x, y and 15, i.e. people who take only Math, people who take Math and English, people who take Math and German and people who take all three. Hope this is clear.

Thank you!

got mixed up with 'exactly' and 'only'

Kudos [?]: 29 [0], given: 11

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16609

Kudos [?]: 273 [0], given: 0

Re: There are 70 students in Math or English or German. Exactly 40 are in [#permalink]

### Show Tags

23 Sep 2017, 21:56
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

Re: There are 70 students in Math or English or German. Exactly 40 are in   [#permalink] 23 Sep 2017, 21:56
Display posts from previous: Sort by