It is currently 18 Oct 2017, 02:31

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Three machines, K, M, and P, working simultaneously and

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Manager
Joined: 02 Dec 2012
Posts: 178

Kudos [?]: 3460 [3], given: 0

Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

03 Dec 2012, 03:40
3
KUDOS
9
This post was
BOOKMARKED
00:00

Difficulty:

15% (low)

Question Stats:

75% (01:00) correct 25% (01:13) wrong based on 1286 sessions

HideShow timer Statistics

Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes.
(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes.
[Reveal] Spoiler: OA

Kudos [?]: 3460 [3], given: 0

Math Expert
Joined: 02 Sep 2009
Posts: 41886

Kudos [?]: 128666 [2], given: 12181

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

03 Dec 2012, 03:42
2
KUDOS
Expert's post
2
This post was
BOOKMARKED
Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

Say k, m, and p are the numbers of minutes machines K, M, and P take, respectively, to complete the task. Then we have that $$\frac{1}{k}+\frac{1}{m}+\frac{1}{p}=\frac{1}{24}$$.

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes --> $$\frac{1}{m}+\frac{1}{p}=\frac{1}{36}$$, thus $$\frac{1}{k}+\frac{1}{36}=\frac{1}{24}$$ --> we can find the value of $$k$$. Sufficient.

(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes --> $$\frac{1}{k}+\frac{1}{p}=\frac{1}{48}$$. The value of k cannot be determined from the data we have. Not sufficient.

_________________

Kudos [?]: 128666 [2], given: 12181

Senior Manager
Joined: 22 Nov 2010
Posts: 287

Kudos [?]: 174 [0], given: 75

Location: India
GMAT 1: 670 Q49 V33
WE: Consulting (Telecommunications)
Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

04 Mar 2013, 02:57
Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes.
RATE K + M + P) - RATE : (M+P) = RATE : K. SUFFICIENT
(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes.
RATE K + M + P) - RATE : (K+P) = RATE : M. NOT SUFFICIENT
_________________

YOU CAN, IF YOU THINK YOU CAN

Kudos [?]: 174 [0], given: 75

Intern
Joined: 23 Oct 2012
Posts: 29

Kudos [?]: 16 [0], given: 3

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

28 Nov 2013, 06:29
Bunuel wrote:
Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

Say k, m, and p are the numbers of minutes machines K, M, and P take, respectively, to complete the task. Then we have that $$\frac{1}{k}+\frac{1}{m}+\frac{1}{p}=\frac{1}{24}$$.

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes --> $$\frac{1}{m}+\frac{1}{p}=\frac{1}{36}$$, thus $$\frac{1}{k}+\frac{1}{36}=\frac{1}{24}$$ --> we can find the value of $$k$$. Sufficient.

(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes --> $$\frac{1}{k}+\frac{1}{p}=\frac{1}{48}$$. The value of k cannot be determined from the data we have. Not sufficient.

I approached this pbm a little differently. Pls. Explain where I am going wrong...is it OK to reason this way?

Let Rk, Rm and Rp be the rates for the machines K,M and P respectively.
Then 1/Rk +1/Rm+1/Rp = 24

St 1 gives ---> 1/Rm + 1/Rp = 36

So, we get 1/Rk + 36 = 24.

Solving, 1/Rk = 24-36=-12

Why am I getting a negative value?

Kudos [?]: 16 [0], given: 3

Math Expert
Joined: 02 Sep 2009
Posts: 41886

Kudos [?]: 128666 [0], given: 12181

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

29 Nov 2013, 10:12
audiogal101 wrote:
Bunuel wrote:
Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

Say k, m, and p are the numbers of minutes machines K, M, and P take, respectively, to complete the task. Then we have that $$\frac{1}{k}+\frac{1}{m}+\frac{1}{p}=\frac{1}{24}$$.

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes --> $$\frac{1}{m}+\frac{1}{p}=\frac{1}{36}$$, thus $$\frac{1}{k}+\frac{1}{36}=\frac{1}{24}$$ --> we can find the value of $$k$$. Sufficient.

(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes --> $$\frac{1}{k}+\frac{1}{p}=\frac{1}{48}$$. The value of k cannot be determined from the data we have. Not sufficient.

I approached this pbm a little differently. Pls. Explain where I am going wrong...is it OK to reason this way?

Let Rk, Rm and Rp be the rates for the machines K,M and P respectively.
Then 1/Rk +1/Rm+1/Rp = 24

St 1 gives ---> 1/Rm + 1/Rp = 36

So, we get 1/Rk + 36 = 24.

Solving, 1/Rk = 24-36=-12

Why am I getting a negative value?

1/Rk, 1/Rm, and 1/Rp are the numbers of minutes machines K, M, and P take to complete the task alone. Each must be greater than the time needed for three machines to complete a certain task together (24 minutes), thus 1/Rk +1/Rm+1/Rp = 24 is not right. The same for 1/Rm + 1/Rp = 36.

Hope it's clear.
_________________

Kudos [?]: 128666 [0], given: 12181

Intern
Joined: 23 Oct 2012
Posts: 29

Kudos [?]: 16 [0], given: 3

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

29 Nov 2013, 22:35
Bunuel wrote:
audiogal101 wrote:
Bunuel wrote:
Three machines, K, M, and P, working simultaneously and independently at their respective constant rates, can complete a certain task in 24 minutes. How long does it take Machine K, working alone at its constant rate, to complete the task?

Say k, m, and p are the numbers of minutes machines K, M, and P take, respectively, to complete the task. Then we have that $$\frac{1}{k}+\frac{1}{m}+\frac{1}{p}=\frac{1}{24}$$.

(1) Machines M and P, working simultaneously and independently at their respective constant rates, can complete the task in 36 minutes --> $$\frac{1}{m}+\frac{1}{p}=\frac{1}{36}$$, thus $$\frac{1}{k}+\frac{1}{36}=\frac{1}{24}$$ --> we can find the value of $$k$$. Sufficient.

(2) Machines K and P, working simultaneously and independently at their respective constant rates, can complete the task in 48 minutes --> $$\frac{1}{k}+\frac{1}{p}=\frac{1}{48}$$. The value of k cannot be determined from the data we have. Not sufficient.

I approached this pbm a little differently. Pls. Explain where I am going wrong...is it OK to reason this way?

Let Rk, Rm and Rp be the rates for the machines K,M and P respectively.
Then 1/Rk +1/Rm+1/Rp = 24

St 1 gives ---> 1/Rm + 1/Rp = 36

So, we get 1/Rk + 36 = 24.

Solving, 1/Rk = 24-36=-12

Why am I getting a negative value?

1/Rk, 1/Rm, and 1/Rp are the numbers of minutes machines K, M, and P take to complete the task alone. Each must be greater than the time needed for three machines to complete a certain task together (24 minutes), thus 1/Rk +1/Rm+1/Rp = 24 is not right. The same for 1/Rm + 1/Rp = 36.

Hope it's clear.

Got it. So would it be correct to say that 1/ (Rk+Rm+Rp) = 24? (since the denominator has combined rate now)?

Kudos [?]: 16 [0], given: 3

Manager
Joined: 18 May 2014
Posts: 63

Kudos [?]: 20 [0], given: 6

Location: United States
Concentration: General Management, Other
GMAT Date: 07-31-2014
GPA: 3.99
WE: Analyst (Consulting)
Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

18 May 2014, 10:47
st 1:

After rephrase :

n = (3^n)/9

No idea about "t". so Insufficient

St 2 :
t = 3^n

Insufficient

Combining st1 & st 2

t= 9n

Plug in few numbers to cross check is n a factor of t??

let n = 2 ; t = 9 *2 = 18

yes n is a factor of t

n= 7; t = 9*7 = 63

yes n is a factor of t

IMO C

Kudos [?]: 20 [0], given: 6

Math Expert
Joined: 02 Sep 2009
Posts: 41886

Kudos [?]: 128666 [0], given: 12181

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

19 May 2014, 02:59
gmatkum wrote:
st 1:

After rephrase :

n = (3^n)/9

No idea about "t". so Insufficient

St 2 :
t = 3^n

Insufficient

Combining st1 & st 2

t= 9n

Plug in few numbers to cross check is n a factor of t??

let n = 2 ; t = 9 *2 = 18

yes n is a factor of t

n= 7; t = 9*7 = 63

yes n is a factor of t

IMO C

I think this post is about some other question.
_________________

Kudos [?]: 128666 [0], given: 12181

Chat Moderator
Joined: 19 Apr 2013
Posts: 690

Kudos [?]: 170 [0], given: 537

Concentration: Strategy, Healthcare
Schools: Sloan '18 (A)
GMAT 1: 730 Q48 V41
GPA: 4
Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

05 Apr 2015, 08:22
Bunuel, does wording seem confusing for you, too? When it writes independently it seems they work separately with the same rate.
_________________

If my post was helpful, press Kudos. If not, then just press Kudos !!!

Kudos [?]: 170 [0], given: 537

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16723

Kudos [?]: 273 [0], given: 0

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

18 Apr 2016, 21:47
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16723

Kudos [?]: 273 [0], given: 0

Re: Three machines, K, M, and P, working simultaneously and [#permalink]

Show Tags

03 Jun 2017, 13:38
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

Re: Three machines, K, M, and P, working simultaneously and   [#permalink] 03 Jun 2017, 13:38
Display posts from previous: Sort by

Three machines, K, M, and P, working simultaneously and

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.