Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

To mail a package, the rate is x cents for the first pound [#permalink]

Show Tags

25 Aug 2011, 09:02

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

71% (02:07) correct
29% (01:20) wrong based on 198 sessions

HideShow timer Statistics

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents B. Combined, with a saving of y-x cents C. Combined, with a saving of x cents D. Separately, with a saving of x-y cents E. Separately, with a saving of y cents

hi there.. could anyone pls help to explain what does it mean by ".......saving of x-y cents, y-x cents" pls?I have difficult understand it..

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. This means it costs x cent for the first pound in weight for example, 20 cents for the first pound. It costs y cents for the every pound in weight above this, for example 10 cents for pound 2 and 10 cents for pound 3. x is more than y. for example 20 cents vs. 10 cents

Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. This means it costs x cent for the first pound in weight for example, 20 cents for the first pound. It costs y cents for the every pound in weight above this, for example 10 cents for pound 2 and 10 cents for pound 3. x is more than y. for example 20 cents vs. 10 cents

Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

Combined is cheaper as we maximise y and minimize x. Answer is: 1) Combined, with a saving of x-y cents

thank you nammer.

I saw you are using (Separate Cost) - (Combined Cost). So it is (2x+6y) - (x+7y) = 2x + 6y - x - 7y = x-y <--- it makes sense here to conclude answer is A.

However, if we try using (Combined Cost) - (Separate Cost). isn't it ended up as Answer (B)

(x+7y) - (2x+6y) = x + 7y - 2x - 6y = -x+y which is a y-x

-> Combined, with a saving of y-x cents

I'm stuck here..

(x+7y) - (2x+6y) = x + 7y - 2x - 6y

It is the other way round as we are calculating saving You save 2x+6y And spend x+7y Therefore you save in total 2x+6y -(x +7y) = x-y
_________________

Show Thanks to fellow members with Kudos its shows your appreciation and its free

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents B. Combined, with a saving of y-x cents C. Combined, with a saving of x cents D. Separately, with a saving of x-y cents E. Separately, with a saving of y cents

If we ship two packages separately it'll cost: \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

If we ship them together in one 8pound package it'll cost: \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y)-(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Re: To mail a package, the rate is x cents for the first pound [#permalink]

Show Tags

03 Oct 2013, 08:25

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: To mail a package, the rate is x cents for the first pound [#permalink]

Show Tags

25 Jun 2015, 10:26

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: To mail a package, the rate is x cents for the first pound [#permalink]

Show Tags

30 Jul 2016, 16:00

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: To mail a package, the rate is x cents for the first pound [#permalink]

Show Tags

14 May 2017, 09:15

Bunuel wrote:

miweekend wrote:

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents B. Combined, with a saving of y-x cents C. Combined, with a saving of x cents D. Separately, with a saving of x-y cents E. Separately, with a saving of y cents

If we ship two packages separately it'll cost: \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

If we ship them together in one 8pound package it'll cost: \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y)-(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Answer: A.

Hope it helps.

Hi BB - i cannot understand why we subtracted 'Together' from 'Separately' and not 'Separately' from 'Together'. Can you please help

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents B. Combined, with a saving of y-x cents C. Combined, with a saving of x cents D. Separately, with a saving of x-y cents E. Separately, with a saving of y cents

If we ship two packages separately it'll cost: \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

If we ship them together in one 8pound package it'll cost: \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y) -(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Answer: A.

Hope it helps.

Hi BB - i cannot understand why we subtracted 'Together' from 'Separately' and not 'Separately' from 'Together'. Can you please help

First of all, I'm not bb. bb is completely different person. I'm Bunuel.

Next, the question asks which method is cheaper?

Shipping separately costs (2x+6y) = (x + x + 6y) and shipping together costs (x+7y) = (x + y + 6y). Since we are told that x>y, then (x + x + 6y) > (x + y + 6y), thus shipping together is cheaper and this way we are saving (2x+6y) -(x+7y)=x-y.

Hope it's clear.

P.S. This is explained in highlighted part of my post above.
_________________

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents B. Combined, with a saving of y-x cents C. Combined, with a saving of x cents D. Separately, with a saving of x-y cents E. Separately, with a saving of y cents

We can solve this problem by first creating expressions for the given information. We know that the rate is x cents for the first pound and y cents for each pound after the first. This can be written as:

x + y(t – 1), in which t is the number of pounds of the package. Let’s first determine the cost of mailing the two packages separately. We start with the 3-pound package:

x + y(3 – 1)

x + y(2)

x + 2y

Next we can determine the cost of mailing the 5-pound package:

x + y(5 – 1)

x + y(4)

x + 4y

Thus, the total cost of mailing the two individual packages separately is:

x + 2y + x + 4y = 2x + 6y

Now let's determine the cost of mailing the two packages if they are combined as one package. The combined package would weigh 8 pounds, and its shipping cost would be:

x + y(8 – 1)

x + y(7)

x + 7y

We are given that x > y, and so we see that mailing the packages individually is more costly than mailing them as one combined package. We now need to determine the difference in cost between the two mailing options:

2x + 6y – (x + 7y)

2x + 6y – x – 7y

x – y

Thus, the savings is (x – y) cents when the packages are shipped as one combined package.

Answer: A
_________________

Scott Woodbury-Stewart Founder and CEO

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...