Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

20 Aug 2013, 11:11

Questions like this: probability and combination take some time to solve.. In most cases you have to read the question again... Is there a shortcut for solving them? If not, how many minutes should i give to the problem before quitting(or selecting some answer randomly) in the test?

Questions like this: probability and combination take some time to solve.. In most cases you have to read the question again... Is there a shortcut for solving them? If not, how many minutes should i give to the problem before quitting(or selecting some answer randomly) in the test?

Thanks in advance.

I wouldn't spend more than 3 minutes on a question. When close to that and still don't know the answer spend the next 5-15 seconds for an educated guess.

As for combinatorics and probability questions: GMAT combination/probability questions are fairly straightforward and as practice shows you will encounter at max 3 questions from both fields combined.

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

22 Aug 2013, 04:32

1

This post received KUDOS

Bunuel wrote:

domfrancondumas wrote:

Questions like this: probability and combination take some time to solve.. In most cases you have to read the question again... Is there a shortcut for solving them? If not, how many minutes should i give to the problem before quitting(or selecting some answer randomly) in the test?

Thanks in advance.

I wouldn't spend more than 3 minutes on a question. When close to that and still don't know the answer spend the next 5-15 seconds for an educated guess.

As for combinatorics and probability questions: GMAT combination/probability questions are fairly straightforward and as practice shows you will encounter at max 3 questions from both fields combined.

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

15 Sep 2013, 23:20

1

This post received KUDOS

9! / 3!6! = 84. So our total possible number of combinations is 84

We have 3! / 3! = 1. That is, there is only one instance when all three brothers win medals.

First, for the three who win medals, we have 3! / 2! = 3. For the six who don't win medals, we have 6! / 5! = 6. We multiply these two numbers to get our total number: 3 × 6 = 18.

The brothers win at least two medals in 18 + 1 = 19 circumstances. Our total number of circumstances is 84, so our probability is 19 / 84. The correct answer is B.

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

01 Aug 2014, 00:34

Bunuel wrote:

cnon wrote:

Triplets Adam, Bruce, and Charlie enter a triathlon. If there are 9 competitors in the triathlon, and medals are awarded for first, second, and third place, what is the probability that at least two of the triplets will win a medal?

A. 3/14 B. 19/84 C. 11/42 D. 15/28 E. 3/4

Manhattan Advanced Gmat Quant Work out set1 4th question

Welcome to GMAT Club. Below is a solution to the question.

The probability that at least two of the triplets will win a medal is the sum of the probability that exactly two of the triplets will win a medal and the probability that all three will win a medal.

The probability that exactly two of the triplets will win a medal is \(\frac{C^2_3*C^1_6}{C^3_9}=\frac{18}{84}\), where \(C^2_3\) is ways to select which two of the triplets will win a medal, \(C^1_6\) is ways to select third medal winner out of the remaining 6 competitors and \(C^3_9\) is total ways to select 3 winners out of 9;

The probability that all three will win a medal is \(\frac{C^3_3}{C^3_9}=\frac{1}{84}\);

\(P=\frac{18}{84}+\frac{1}{84}=\frac{19}{84}\).

Answer: B.

Hope it's clear.

P.S. Please post answer choices for PS problems.

Hi Bunuel, I wonder how we can solve this question in 2.5 mins. I spent almost 3.5 mins to solve this question. Is there any shortcuts?
_________________

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

28 Nov 2014, 05:34

Hi Bunuel, My take was probability of getting a winner but from not a single one from the triplets was 6/9*5/8*4/7. so, atleast 2 of the winning the prizes will be 1-(6/9*5/8*4/7)=16/21.

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

04 Oct 2016, 10:06

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Triplets Adam, Bruce, and Charlie enter a triathlon. There are nine [#permalink]

Show Tags

13 Feb 2017, 16:47

1

This post was BOOKMARKED

Triplets Adam, Bruce, and Charlie enter a triathlon. There are nine competitors in the triathlon. If every competitor has an equal chance of winning, and three medals will be awarded, what is the probability that at least two of the triplets will win a medal?

Triplets Adam, Bruce, and Charlie enter a triathlon. There are nine competitors in the triathlon. If every competitor has an equal chance of winning, and three medals will be awarded, what is the probability that at least two of the triplets will win a medal?

(A) 3/14

(B) 19/84

(C) 11/42

(D) 15/28

(E) 3/4

Hi,

Note :- all medals are equal that is not different for 1,2 and 3 POSITION

Two cases 1) only two get medals.. Choose 2 out of three A,B, and C---3C2=3.. The third can be any of the remaining 6.. So total ways=3*6=18.. 2) all three get medals.. Only 1 way..

Triplets Adam, Bruce, and Charlie enter a triathlon. There are nine competitors in the triathlon. If every competitor has an equal chance of winning, and three medals will be awarded, what is the probability that at least two of the triplets will win a medal?

Concentration: General Management, Entrepreneurship

GPA: 3.8

WE: Engineering (Energy and Utilities)

Re: Triplets Adam, Bruce, and Charlie enter a triathlon. If [#permalink]

Show Tags

04 Aug 2017, 02:48

cnon wrote:

Triplets Adam, Bruce, and Charlie enter a triathlon. If there are 9 competitors in the triathlon, and medals are awarded for first, second, and third place, what is the probability that at least two of the triplets will win a medal?

A. 3/14 B. 19/84 C. 11/42 D. 15/28 E. 3/4

Manhattan Advanced Gmat Quant Work out set1 4th question

Total number of outcomes = 9C3 = 9!/3!/6! = 9*8*7/3/2 = 3*4*7 = 84

Number of outcomes of winning atleast 2 medals by triplet = Number of outcomes of winning 2 medals by triplets + Number of outcomes of winning 3 medals by triplets = 3C2*6C1 + 3C3 = 18+1 = 19

So, probability that at least two of the triplets will win a medal = 19/84

Version 8.1 of the WordPress for Android app is now available, with some great enhancements to publishing: background media uploading. Adding images to a post or page? Now...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...