Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 24 May 2017, 12:58

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Two water pumps, working simultaneously at their respective

Author Message
TAGS:

### Hide Tags

Intern
Joined: 23 Jun 2013
Posts: 1
Followers: 0

Kudos [?]: 12 [1] , given: 1

Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

12 Jul 2013, 07:26
1
KUDOS
12
This post was
BOOKMARKED
00:00

Difficulty:

15% (low)

Question Stats:

80% (02:20) correct 20% (01:51) wrong based on 407 sessions

### HideShow timer Statistics

Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!
[Reveal] Spoiler: OA

Last edited by Bunuel on 12 Jul 2013, 08:02, edited 1 time in total.
Renamed the topic and edited the question.
Math Expert
Joined: 02 Sep 2009
Posts: 38857
Followers: 7726

Kudos [?]: 106034 [0], given: 11607

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

12 Jul 2013, 08:25
Expert's post
9
This post was
BOOKMARKED
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

Say the rate of the faster pump is x pool/hour, then the rate of the slower pump would be x/1.5=2x/3 pool/hour.

Since, the combined rate is 1/4 pool/hour, then we have that x+2x/3=1/4 --> x=3/20 pool hour.

The time is reciprocal of the rate, therefore it would take 20/3 hours the faster pump to fill the pool working alone.

All DS work/rate problems to practice: search.php?search_id=tag&tag_id=46
All PS work/rate problems to practice: search.php?search_id=tag&tag_id=66

_________________
Manager
Joined: 06 Jul 2013
Posts: 109
GMAT 1: 620 Q48 V28
GMAT 2: 700 Q50 V33
Followers: 0

Kudos [?]: 26 [0], given: 42

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

12 Jul 2013, 10:01
i am little confused. If i take slower pump as X then 1/X + 1/1.5X = 1/4 which would result X = 20/3 and so faster pump as 10..... where i am going wrong...
Math Expert
Joined: 02 Sep 2009
Posts: 38857
Followers: 7726

Kudos [?]: 106034 [0], given: 11607

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

12 Jul 2013, 10:07
AMITAGARWAL2 wrote:
i am little confused. If i take slower pump as X then 1/X + 1/1.5X = 1/4 which would result X = 20/3 and so faster pump as 10..... where i am going wrong...

In my solution x is the rate in your solution x is the time.

In your solution x is the time of the faster pump and 1.5x is the time of the slower pump (faster pump needs less time).

Hope it's clear.
_________________
Manager
Joined: 06 Jul 2013
Posts: 109
GMAT 1: 620 Q48 V28
GMAT 2: 700 Q50 V33
Followers: 0

Kudos [?]: 26 [0], given: 42

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

12 Jul 2013, 11:34
yes it does. Thanks...
Manager
Status: folding sleeves up
Joined: 26 Apr 2013
Posts: 156
Location: India
Concentration: Finance, Strategy
GMAT 1: 530 Q39 V23
GMAT 2: 560 Q42 V26
GPA: 3.5
WE: Consulting (Computer Hardware)
Followers: 1

Kudos [?]: 101 [3] , given: 39

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

08 Sep 2013, 12:25
3
KUDOS
2
This post was
BOOKMARKED
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

sol:

Rates be A and B

(A+B) * Time = Work
(A+B) * 4 = 1 ---->eq 1

A= 3B/2 ----->eq 2

substituting eq 2 in eq 1

B = 1/10 --->eq 3

substituting eq 3 in eq 2

A= 3/20

Time= work/rate
= 1/(3/20) =>20/3
Manager
Joined: 26 Feb 2013
Posts: 176
Followers: 0

Kudos [?]: 46 [0], given: 25

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

25 Sep 2013, 05:13
I did,
A+B = 4
A = 1.5B

4-B = 1.5B => B = 8/5

Why is this wrong?
Math Expert
Joined: 02 Sep 2009
Posts: 38857
Followers: 7726

Kudos [?]: 106034 [4] , given: 11607

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

25 Sep 2013, 08:48
4
KUDOS
Expert's post
Skag55 wrote:
I did,
A+B = 4
A = 1.5B

4-B = 1.5B => B = 8/5

Why is this wrong?

We are told that "two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool".

If one pump needs A hours to fill the pool (rate=1/A) and another need B hours to fill the same pool (rate=1/B), then 1/A + 1/B = 1/4.

Solving 1/A + 1/B = 1/4 and A = 1.5B gives A=10 and B=20/3.

Check the links provided here: two-water-pumps-working-simultaneously-at-their-respective-155865.html#p1245761 for more.
_________________
Intern
Joined: 01 Nov 2012
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 2

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

01 Sep 2014, 20:06
Quote:
I did,
A+B = 4
A = 1.5B

4-B = 1.5B => B = 8/5

Why is this wrong?

A+B=(1/T)
NOT
A+B=T

Per formula,
(A+B)T = 1 where A is rate of pump A, B is rate of pump B, T time to complete, and 1 marking completion.
[(A+B)T]/T = 1/T
(A+B) = (1/T)

With B being the rate of the faster pump, B = (3/2)A

A + (3/2)A = (1/4)
(5/2)A = 1/4
A = 1/10
B = 3/20

B = 1/T
(3/20) = 1/T
T = (20/3)
Intern
Joined: 15 May 2014
Posts: 27
Followers: 0

Kudos [?]: 24 [5] , given: 22

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

15 Sep 2014, 06:40
5
KUDOS
4
This post was
BOOKMARKED
AMITAGARWAL2 wrote:
yes it does. Thanks...

Let me elaborate the math so that it's absolutely clear:

Let's calculate the combined rate first:

Rate x Time = Work
Rate x 4 = 1 [It takes 4 hours for both the pumps to fill up the pool]
Rate = 1/4 [So, 1/4 is the rate for the pumps working together]

Now, the let's assume the rate for the slower pump is x ; so the rate for the faster pump will be 1.5x

According to our previous calculations,
Slower pump + faster pump = 1/4
x + 1.5x = 1/4
2.5x = 1/4
x = 1/10 [slower pump's rate]

so, the faster pump's rate is 1/10 x 1.5 = 3/20

Now let's calculate the time it will take for the faster pump

Rate x Time = Work
3/20 x Time = 1
Time = 1 x 20/3 = 20/3 the answer
Manager
Joined: 23 Dec 2014
Posts: 51
Followers: 0

Kudos [?]: 6 [0], given: 53

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

14 Feb 2015, 14:38
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

fast pump takes x hour
Slow pump takes 1.5x hour

so

1/x+1/1.5x = 1/4

> (1.5+1)/1.5x = 1/4
> 2.5/1.5x = 1/4
> 1.5 x = 10
>x = 10/1.5
>x = 20/3

Somebody confirm whether this is a right approach to do this type of problem or not. Thanks
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 9109
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: 340 Q170 V170
Followers: 440

Kudos [?]: 2860 [0], given: 169

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

14 Feb 2015, 21:23
Hi Salvetor,

Yes, your approach is correct. In 'Work' questions, there are usually several different ways to organize the given information, but they all end up involving a ratio at some point.

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

# Rich Cohen

Co-Founder & GMAT Assassin

# Special Offer: Save \$75 + GMAT Club Tests

60-point improvement guarantee
www.empowergmat.com/

***********************Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!***********************

Intern
Joined: 30 Oct 2013
Posts: 35
Followers: 0

Kudos [?]: 0 [0], given: 47

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

05 Feb 2016, 19:29
Salvetor wrote:
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

fast pump takes x hour
Slow pump takes 1.5x hour

so

1/x+1/1.5x = 1/4

> (1.5+1)/1.5x = 1/4
> 2.5/1.5x = 1/4
> 1.5 x = 10
>x = 10/1.5
>x = 20/3

Somebody confirm whether this is a right approach to do this type of problem or not. Thanks

I got all of this, and I get the whole logic, even why you have to flip etc. The only part I didn't get is why 1/x + 1/1.5x gives you a numerator (1.5+1)/1.5x rather than (1.5x+x)/1.5x.......I get the denominator, it's just the numerator part which confuses me, seems like I missed a fundamental concept in fractions.
Manager
Joined: 22 Apr 2015
Posts: 51
Location: United States
GMAT 1: 620 Q46 V27
GPA: 3.86
Followers: 0

Kudos [?]: 15 [0], given: 118

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

06 Feb 2016, 10:15
How would you solve this problem by saying the faster pump 1.5x and slower x. I cant seem to figure that out.
Math Forum Moderator
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 2678
Location: India
GPA: 3.5
Followers: 110

Kudos [?]: 859 [0], given: 324

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

06 Feb 2016, 10:48
xLUCAJx wrote:
How would you solve this problem by saying the faster pump 1.5x and slower x. I cant seem to figure that out.

Plug in some values-
Attachment:

Plug in.PNG [ 2 KiB | Viewed 6006 times ]

Quote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool.

Capacity of the swimming pool is -

5*4 = 20

Quote:
how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

The faster pump is pump B, so time required by fill the swimming pool alone will be = Total Capacity of the pool/Efficiency of Pipe B

20/3

_________________

Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15429
Followers: 649

Kudos [?]: 207 [0], given: 0

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

02 Mar 2017, 03:28
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Target Test Prep Representative
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 895
Followers: 34

Kudos [?]: 506 [1] , given: 2

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

06 Mar 2017, 18:13
1
KUDOS
Expert's post
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

We are given that the rate of 1 pump is 1.5 times faster than the rate of the other pump. Since 1 pool is being filled and rate = work/time, the rate of the faster pump is 1/x, in which x = the time it takes for the faster pump to fill the pool, and the rate of the slower pump = 1/(1.5x) = 1/(3x/2) = 2/3x.

Since when the pumps work together they take 4 hours to fill 1 pool, we can create the following equation:

work of faster pump + work of slower pump = 1

(1/x)4 + (2/3x)4 = 1

4/x + 8/3x = 1

Multiplying the entire equation by 3x, we have:

12 + 8 = 3x

20 = 3x

20/3 = x

_________________

Jeffery Miller

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Manager
Joined: 12 Nov 2016
Posts: 193
Followers: 0

Kudos [?]: 7 [0], given: 135

Re: Two water pumps, working simultaneously at their respective [#permalink]

### Show Tags

15 Mar 2017, 22:30
kmasonbx wrote:
Two water pumps, working simultaneously at their respective constant rates, took exactly four hours to fill a certain swimming pool. If the constant rate of one pump was 1.5 times the constant rate of the other, how many hours would it have taken the faster pump to fill the pool if it had worked alone at it's constant rate?

A. 5
B. 16/3
C. 11/2
D. 6
E. 20/3

Work rate problems are my weakest area. For whatever reason I get mixed up on these problem. Even knowing the answer to this question I can't figure out how it comes out to that answer. Any help would be great, thanks!

This problem asks us what is the amount of hours it would have taken the faster pump to fill the pool by itself- to solve this question you don't necessarily need an exact value- well, you might with a 700 level question but here's my process for this question:

We can pick and choose values- again, this may not be the best approach for a 700 or maybe 600 level question but for a 500 it might be faster
If it takes the faster pump, say "6" hours to complete 1 job (filling the entire pool) then it takes the slower pump 4 hours to fill the pool by itself (you can do 60/15 to get 4 or you can multiply 4 by 4 and add half of 4 to get 6). Now let's set the denominator's equal and combine the rates ( I learned this from Mcgoosh)
1 job /6 hours +1 job /4 hours =
4 jobs /24 hours +6 jobs /24 hours= 10 jobs/24 hours
1 job/ 2.4 hours

This does not fit our answer for what the combined work rate should be- therefore, we can eliminate any answer less than 6. "E" by elimination must be the answer.
Re: Two water pumps, working simultaneously at their respective   [#permalink] 15 Mar 2017, 22:30
Similar topics Replies Last post
Similar
Topics:
4 Working at constant rate, pump X pumped out half of the water in a flo 4 02 Aug 2016, 12:33
3 Working simultaneously at their respective constant rates, machine A a 1 02 Jun 2016, 20:13
40 Working alone at its constant rate, pump X pumped out ¼ of the water 8 07 Apr 2017, 19:47
19 Machines A and B, working simultaneously at their respective constant 18 23 Dec 2016, 05:32
124 Working simultaneously at their respective constant rates, M 29 22 Apr 2017, 16:33
Display posts from previous: Sort by