GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Apr 2019, 01:52

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Veritas Prep 10 Year Anniversary Promo Question #3

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Current Student
User avatar
B
Joined: 03 Sep 2012
Posts: 380
Location: United States
Concentration: Healthcare, Strategy
GMAT 1: 730 Q48 V42
GPA: 3.88
WE: Medicine and Health (Health Care)
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 20 Sep 2012, 01:01
Because the series is ~ 0,3,-3,0,3,-3,0 .... Upto infinite .. Therefore we can imagine it as a set where the sum of every third is ZERO , so after every 3 terms we start from scratch with a zero... At A99 , the sum will be zero , and the 100th term will be a 0 , followed by the 101st term ie a 3 therfore from numbers 1 thru 99 the sum = 0 , from 100-101 the sum is 0+3 ie. 3. Therefore the answer is +3 ...

We an also devide the closest term to 101 by 3 , ie 99 so start with from a clean state from 99 , and just calculate the sum of 100 and 101st term... So the sum of the first two terms of the series ... That is S2 .. which is 0 +3 = 3 ...
_________________
"When you want to succeed as bad as you want to breathe, then you’ll be successful.” - Eric Thomas
Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2613
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 26 Aug 2016, 04:22
Senior Manager
Senior Manager
User avatar
G
Status: love the club...
Joined: 24 Mar 2015
Posts: 276
Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 11 Oct 2017, 13:43
Bunuel wrote:

Winner:

yogeshwar007

Official Explanation:

Answer is C

While we spend a lot of time honing the skill of translating English into algebra, there is sometimes great comfort to be gained in a sequence problem through doing precisely the reverse. The general rule for this sequence is that we derive each term based on the two terms that precede it – specifically by subtracting the absolute value of the previous term from the absolute value of the “pre-previous” one.

So \(a_3 = |a_1| - |a_2|\), and \(a_4 = |a_2| - |a_3|\), and \(a_5 = |a_3| - |a_4|\), and so on. We are told that the sequence begins 0, 3, ..., so we can derive that:

\(a_3 = |a_1| - |a_2| = |0| - |3| = 0 - 3 = -3\).
Then \(a_4 = |a_2| - |a_3| = |3| - |-3| = 3 - 3 = 0\).
Then \(a_5 = |a_3| - |a_4| = |-3| - |0| = 3 - 0 = 3\).

As soon as we’ve seen \(a_4\) and \(a_5\) turn out to be 0 and 3 consecutively, we know that the next number to show up in the sequence will be identical to the number that showed up after the last time we saw 0 and 3 appear consecutively (i.e. as \(a_1\) and \(a_2\)) — so \(a_6\) will be identical to \(a_3\), so -3. So we have established the pattern 0, 3, -3, 0, 3, -3, ... for our sequence.

Every time we finish a complete cycle within the sequence, the sum returns to 0 (since 0 + 3 + -3 = 0). We finish a cycle after every third entry (i.e. after the third, the sixth, the ninth, and so on), so we will have done so (and returned our running sum to 0) with \(a_{99}\). \(a_{100}\) will then add itself (0) to that sum, and \(a_{101}\) will add itself (3) onto that. So we will land at a sum of 3 for \(s_{101}\).


hi Bunuel

The sum of numbers until a99 will be zero, that's okay, but how can a100 be zero..?

At a99 the cycle is complete, the new cycle begins at a100, then how ..?

please say to me

I have tried this way
99 is a multiple of 3, so when the cycle is complete a99 corresponds to a3, and 100 is multiple of 4, so 100 corresponds to a4 ending at 0, so a101 is equal to 3

please help me work it out

thanks in advance, man
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54375
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 11 Oct 2017, 20:57
gmatcracker2017 wrote:
Bunuel wrote:

Winner:

yogeshwar007

Official Explanation:

Answer is C

While we spend a lot of time honing the skill of translating English into algebra, there is sometimes great comfort to be gained in a sequence problem through doing precisely the reverse. The general rule for this sequence is that we derive each term based on the two terms that precede it – specifically by subtracting the absolute value of the previous term from the absolute value of the “pre-previous” one.

So \(a_3 = |a_1| - |a_2|\), and \(a_4 = |a_2| - |a_3|\), and \(a_5 = |a_3| - |a_4|\), and so on. We are told that the sequence begins 0, 3, ..., so we can derive that:

\(a_3 = |a_1| - |a_2| = |0| - |3| = 0 - 3 = -3\).
Then \(a_4 = |a_2| - |a_3| = |3| - |-3| = 3 - 3 = 0\).
Then \(a_5 = |a_3| - |a_4| = |-3| - |0| = 3 - 0 = 3\).

As soon as we’ve seen \(a_4\) and \(a_5\) turn out to be 0 and 3 consecutively, we know that the next number to show up in the sequence will be identical to the number that showed up after the last time we saw 0 and 3 appear consecutively (i.e. as \(a_1\) and \(a_2\)) — so \(a_6\) will be identical to \(a_3\), so -3. So we have established the pattern 0, 3, -3, 0, 3, -3, ... for our sequence.

Every time we finish a complete cycle within the sequence, the sum returns to 0 (since 0 + 3 + -3 = 0). We finish a cycle after every third entry (i.e. after the third, the sixth, the ninth, and so on), so we will have done so (and returned our running sum to 0) with \(a_{99}\). \(a_{100}\) will then add itself (0) to that sum, and \(a_{101}\) will add itself (3) onto that. So we will land at a sum of 3 for \(s_{101}\).


hi Bunuel

The sum of numbers until a99 will be zero, that's okay, but how can a100 be zero..?

At a99 the cycle is complete, the new cycle begins at a100, then how ..?

please say to me

I have tried this way
99 is a multiple of 3, so when the cycle is complete a99 corresponds to a3, and 100 is multiple of 4, so 100 corresponds to a4 ending at 0, so a101 is equal to 3

please help me work it out

thanks in advance, man


It's very easy. The sequence is:

{0, 3, -3} {0, 3, -3} {0, 3, -3} {0, 3, -3} ...

Notice that if n is a multiple of 3, so a3, a6, ..., a99, then it's -3. The next terms, so a4, a7, ..., a100 are 0.
_________________
Senior Manager
Senior Manager
User avatar
G
Status: love the club...
Joined: 24 Mar 2015
Posts: 276
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 12 Oct 2017, 10:04
Bunuel wrote:
gmatcracker2017 wrote:
Bunuel wrote:

Winner:

yogeshwar007

Official Explanation:

Answer is C

While we spend a lot of time honing the skill of translating English into algebra, there is sometimes great comfort to be gained in a sequence problem through doing precisely the reverse. The general rule for this sequence is that we derive each term based on the two terms that precede it – specifically by subtracting the absolute value of the previous term from the absolute value of the “pre-previous” one.

So \(a_3 = |a_1| - |a_2|\), and \(a_4 = |a_2| - |a_3|\), and \(a_5 = |a_3| - |a_4|\), and so on. We are told that the sequence begins 0, 3, ..., so we can derive that:

\(a_3 = |a_1| - |a_2| = |0| - |3| = 0 - 3 = -3\).
Then \(a_4 = |a_2| - |a_3| = |3| - |-3| = 3 - 3 = 0\).
Then \(a_5 = |a_3| - |a_4| = |-3| - |0| = 3 - 0 = 3\).

As soon as we’ve seen \(a_4\) and \(a_5\) turn out to be 0 and 3 consecutively, we know that the next number to show up in the sequence will be identical to the number that showed up after the last time we saw 0 and 3 appear consecutively (i.e. as \(a_1\) and \(a_2\)) — so \(a_6\) will be identical to \(a_3\), so -3. So we have established the pattern 0, 3, -3, 0, 3, -3, ... for our sequence.

Every time we finish a complete cycle within the sequence, the sum returns to 0 (since 0 + 3 + -3 = 0). We finish a cycle after every third entry (i.e. after the third, the sixth, the ninth, and so on), so we will have done so (and returned our running sum to 0) with \(a_{99}\). \(a_{100}\) will then add itself (0) to that sum, and \(a_{101}\) will add itself (3) onto that. So we will land at a sum of 3 for \(s_{101}\).


hi Bunuel

The sum of numbers until a99 will be zero, that's okay, but how can a100 be zero..?

At a99 the cycle is complete, the new cycle begins at a100, then how ..?

please say to me

I have tried this way
99 is a multiple of 3, so when the cycle is complete a99 corresponds to a3, and 100 is multiple of 4, so 100 corresponds to a4 ending at 0, so a101 is equal to 3

please help me work it out

thanks in advance, man


It's very easy. The sequence is:

{0, 3, -3} {0, 3, -3} {0, 3, -3} {0, 3, -3} ...

Notice that if n is a multiple of 3, so a3, a6, ..., a99, then it's -3. The next terms, so a4, a7, ..., a100 are 0.



thanks Bunuel

if started from "0", a99 will correspond to "-3" and will sum to "0", then a100 will have value "0" and 101 will be "3"

now it is very clear to me, thank to you again, man

can you please, however, provide me some questions of this kind for further practice?
thanks 8-)
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 54375
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 12 Oct 2017, 10:06
gmatcracker2017 wrote:
thanks Bunuel

if started from "0", a99 will correspond to "-3" and will sum to "0", then a100 will have value "0" and 101 will be "3"

now it is very clear to me, thank to you again, man

can you please, however, provide me some questions of this kind for further practice?
thanks 8-)


12. Sequences



_________________
Senior Manager
Senior Manager
User avatar
G
Status: love the club...
Joined: 24 Mar 2015
Posts: 276
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 12 Oct 2017, 10:18
Bunuel wrote:
gmatcracker2017 wrote:
thanks Bunuel

if started from "0", a99 will correspond to "-3" and will sum to "0", then a100 will have value "0" and 101 will be "3"

now it is very clear to me, thank to you again, man

can you please, however, provide me some questions of this kind for further practice?
thanks 8-)


12. Sequences




thanks a lot bunu 8-)
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 10558
Re: Veritas Prep 10 Year Anniversary Promo Question #3  [#permalink]

Show Tags

New post 29 Mar 2019, 00:25
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: Veritas Prep 10 Year Anniversary Promo Question #3   [#permalink] 29 Mar 2019, 00:25

Go to page   Previous    1   2   [ 28 posts ] 

Display posts from previous: Sort by

Veritas Prep 10 Year Anniversary Promo Question #3

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.