GMAT Club Forum
https://gmatclub.com:443/forum/

If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =
https://gmatclub.com/forum/if-p-1-14-13-and-q-1-14-13-then-p-2-2pq-q-279624.html
Page 1 of 1

Author:  Bunuel [ 22 Oct 2018, 01:33 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

If \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) then \(p^2 + 2pq + q^2 =\)

A. 26
B. 28
C. 52
D. 56
E. 112

Author:  Chethan92 [ 22 Oct 2018, 02:37 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

Factorizing both P and Q gives,

P = \(\sqrt{14} + \sqrt{13}\)

Q = \(\sqrt{14} - \sqrt{13}\)

Question reduced to \((p+q)^2\) = \((2\sqrt{14})^2\) = 4*14 = 56.

D is the answer.

Author:  pushpitkc [ 22 Oct 2018, 02:39 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

Bunuel wrote:
If \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) then \(p^2 + 2pq + q^2 =\)

A. 26
B. 28
C. 52
D. 56
E. 112


First step is to simplify p and q by multiplying and dividing with it's conjugate. More on that here.

Now the values of p and q are \(√14 + √13\) and \(√14 - √13\) respectively.

\(p^2 + 2pq + q^2\) = \((p+q)^2\) Now, p+q = \(√14 + √13 + √14 - √13 = 2√14\).

Therefore, the value of \((p+q)^2\) is \((2√14)^2 = 4*14 = 56\)(Option D)

Author:  PKN [ 22 Oct 2018, 02:40 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

Bunuel wrote:
If \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) then \(p^2 + 2pq + q^2 =\)

A. 26
B. 28
C. 52
D. 56
E. 112


We know, \(p^2 + 2pq + q^2 =(p+q)^2\)=\((\frac{1}{√14 − √13}+\frac{1}{√14 + √13})^2\)=\((\frac{√14 + √13+√14 - √13}{(√14 + √13)(√14 - √13)})^2\)=\((\frac{2√14}{(√14)^2-(√13)^2})^2\)=4*14=56

Ans. (D)

Author:  dollytaneja51 [ 22 Oct 2018, 05:04 ]
Post subject:  Re: If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

Posted from my mobile device

Attachments:
A534BC51-AC08-437E-A099-78A249E75CBB.jpeg
A534BC51-AC08-437E-A099-78A249E75CBB.jpeg [ 96.38 KiB | Viewed 7232 times ]

Author:  dave13 [ 22 Oct 2018, 09:46 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

pushpitkc wrote:
Bunuel wrote:
If \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) then \(p^2 + 2pq + q^2 =\)

A. 26
B. 28
C. 52
D. 56
E. 112


First step is to simplify p and q by multiplying and dividing with it's conjugate. More on that here.

Now the values of p and q are \(√14 + √13\) and \(√14 - √13\) respectively.

\(p^2 + 2pq + q^2\) = \((p+q)^2\) Now, p+q = \(√14 + √13 + √14 - √13 = 2√14\).

Therefore, the value of \((p+q)^2\) is \((2√14)^2 = 4*14 = 56\)(Option D)


pushpitkc if i follow this formula \((p+q)^2\) i get this:

\(((√14 + √13) + (√14 - √13))^2 = (√14 )^2 + √14 *( - √13 ) + √13 *√14 +(√13)^2\) why ? :?

Author:  Chethan92 [ 22 Oct 2018, 18:34 ]
Post subject:  Re: If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

dave13 wrote:
pushpitkc wrote:
Bunuel wrote:
If \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) then \(p^2 + 2pq + q^2 =\)

A. 26
B. 28
C. 52
D. 56
E. 112


First step is to simplify p and q by multiplying and dividing with it's conjugate. More on that here.

Now the values of p and q are \(√14 + √13\) and \(√14 - √13\) respectively.

\(p^2 + 2pq + q^2\) = \((p+q)^2\) Now, p+q = \(√14 + √13 + √14 - √13 = 2√14\).

Therefore, the value of \((p+q)^2\) is \((2√14)^2 = 4*14 = 56\)(Option D)


pushpitkc if i follow this formula \((p+q)^2\) i get this:

\(((√14 + √13) + (√14 - √13))^2 = (√14 )^2 + √14 *( - √13 ) + √13 *√14 +(√13)^2\) why ? :?


Cancel out the terms sqrt(13) inside and then solve. You'll get (2sqrt(14))^2 = 4*14 = 56

Posted from my mobile device

Author:  dave13 [ 23 Oct 2018, 02:49 ]
Post subject:  If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

First step is to simplify p and q by multiplying and dividing with it's conjugate. More on that here.

Now the values of p and q are \(√14 + √13\) and \(√14 - √13\) respectively.

\(p^2 + 2pq + q^2\) = \((p+q)^2\) Now, p+q = \(√14 + √13 + √14 - √13 = 2√14\).

Therefore, the value of \((p+q)^2\) is \((2√14)^2 = 4*14 = 56\)(Option D) [/quote]

pushpitkc if i follow this formula \((p+q)^2\) i get this:

\(((√14 + √13) + (√14 - √13))^2 = (√14 )^2 + √14 *( - √13 ) + √13 *√14 +(√13)^2\) why ? :?[/quote]

Cancel out the terms sqrt(13) inside and then solve. You'll get (2sqrt(14))^2 = 4*14 = 56

Posted from my mobile device[/quote]





thanks but there are three radicals with term term 13

if i cancel \(( - √13 ) + √13\) i will still be left with \((√13)^2\) same question is with radical 14 :?


and will get (√14 )^2 + √14 + √14 +(√13)^2 :?

hey pushpitkc gmat mathmaster :) are you there ? :grin:

Author:  pushpitkc [ 23 Oct 2018, 03:43 ]
Post subject:  Re: If p = 1/(√14 − √13) and q = 1/(√14 + √13) then p^2 + 2pq + q^2 =

Hey dave13

You have unnecessarily confused yourself here.

We have p = √14 + √13, q = √14 - √13 and need to find \((p+q)^2\)

First step is to find the value of p+q which is √14 + √13 + √14 - √13 = 2√14
(Here the √13 cancels each other and we are left with two √14)

The second step is to find the square of the value of (p+q) which is \((2√14)^2 = 4*14 = 56\)

Hope that clears your confusion!

Author:  BrushMyQuant [ 21 Feb 2023, 07:50 ]
Post subject:  Re: If p = 1/(14 13) and q = 1/(14 + 13) then p^2 + 2pq + q^2 =

↧↧↧ Weekly Video Solution to the Problem Series ↧↧↧




Given that \(p=\frac{1}{√14 − √13}\) and \(q = \frac{1}{√14 + √13}\) and we need to find the value of \(p^2 + 2pq + q^2\) =

\(p^2 + 2pq + q^2\) = \((p + q)^2\) = \( ( \frac{1}{√14 − √13} + \frac{1}{√14 + √13} ) ^ 2\) = \((\frac{√14 + √13 + √14 − √13}{ (√14 − √13) * (√14 + √13)} )^2\)

Now, denominator becomes (a-b) * (a+b) and will be equal to \(a^2 - b^2\)

=> \((\frac{√14 + √13 + √14 − √13}{ (√14)^2 − (√13)^2} )^2\) = \((\frac{2√14 }{14 - 13} )^2\) = 4 * 14 = 56

So, Answer will be D
Hope it helps!

Watch the following video to learn the Properties of Roots


Page 1 of 1 All times are UTC - 8 hours [ DST ]
Powered by phpBB © phpBB Group
http://www.phpbb.com/