It is currently 23 Oct 2017, 14:07


GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

for You

we will pick new questions that match your level based on your Timer History

Your Progress

every week, we’ll send you an estimated GMAT score based on your performance


we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.


Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

virtually everything astronomers known about objects outside

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
Joined: 07 Mar 2005
Posts: 178

Kudos [?]: 12 [0], given: 0

virtually everything astronomers known about objects outside [#permalink]

Show Tags

New post 15 Apr 2005, 23:30
virtually everything astronomers known about objects
outside the solar system is based on the detection of
photons-quanta of electromagnetic radiation. yet there
is another form of radiation that permeates the universe:
(5) neutrinos. with (as its name implies) no electric charge,
and negligible mass, the neutrino interacts with other
particles so rarely that a neutrino can cross the entire
universe, even traversing substantial aggregations of
matter, without being absorbed or even deflected. neu-
(10) trinos can thus escape from regions of space where light
and other kinds of electromagnetic radiation are blocked
by matter. furthermore, neutrinos carry with them
information about the site and circumstances of their
production: therefore, the detection of cosmic neutrinos
(15) could provide new information about a wide variety of
cosmic phenomena and about the history of the uni-
but how can scientists detect a particle that interacts
so infrequently with other matter? twenty-five years
(20) passed between pauli's hypothesis that the neutrino
existed and its actual detection: since then virtually all
research with neutrinos has been with neutrinos created
artificially in large particle accelerators and studied
under neutrino microscopes. but a neutrino telescope,
(25) capable of detecting cosmic neutrinos, is difficult to co-
nstruct. no apparatus can detect neutrinos unless it is
extremely massive, because great mass is synonymous
with huge numbers of nucleons (neutrons and protons),
and the more massive the detector, the greater the pro-
(30) bability of one of its nucleon's reacting with a neutrino.
in addition, the apparatus must be sufficiently shielded
from the interfering effects of other particles.
fortunately, a group of astrophysicists has proposed
a means of detecting cosmic neutrinos by harnessing the
(35) mass of the ocean. named dumand, for deep under-
water muon and neutrino detector, the project calls for
placing an array of light sensors at a depth of five kilo-
meters under the ocean surface. the detecting medium is
the seawater itself: when a neutrino interacts with a
(40)particle in an atom of seawater. the result is a cascade of
electrically charged particles and a flash of light that can
be detected by the sensors. the five kilometers of sea-
water above the sensors will shield them from the interf-
ering effects of other high-energy particles raining down
(45) through the atmosphere.
the strongest motivation for the dumand project
is that it will exploit an important source of information
about the universe. the extension of astronomy from
visible light to radio waves to x-rays and gamma rays
(50) never failed to lead to the discovery of unusual objects
such as radio galaxies, quasars, and pulsars. each of
these discoveries came as a surprise. neutrino astronomy
will doubtless bring its own share of surprises.

1. which of the following titles best summarizes the passage as a whole?
(a) at the threshold of neutrino astronomy
(b) neutrinos and the history of the universe
(c) the creation and study of neutrinos
(d) the dumand system and how it works
(e) the properties of the neutrino

2. with which of the following statements regarding neutrino astronomy would the author be most likely to agree?
(a) neutrino astronomy will supersede all present forms of astronomy.
(b) neutrino astronomy will be abandoned if the dumand project fails.
(c) neutrino astronomy can be expected to lead to major breakthroughs in astronomy.
(d) neutrino astronomy will disclose phenomena that will be more surprising than past discoveries.
(e) neutrino astronomy will always be characterized by a large time lag between hypothesis and experimental confirmation.

3. in the last paragraph, the author describes the development of astronomy in order to
(a) suggest that the potential findings of neutrino astronomy can be seen as part of a series of astronomical successes
(b) illustrate the role of surprise in scientific discovery
(c) demonstrate the effectiveness of the dumand apparatus in detecting neutrinos
(d) name some cosmic phenomena that neutrino astronomy will illuminate
(e) contrast the motivation of earlier astronomers with that of the astrophysicists working on the dumand project

4.according to the passage, one advantage that neutrinos have for studies in astronomy is that they
(a) have been detected for the last twenty-five years
(b) possess a variable electric charge
(c) are usually extremely massive
(d) carry information about their history with them
(e) are very similar to other electromagnetic particles

5. according to the passage, the primary use of the apparatus mentioned in lines 24-32 would be to
(a) increase the mass of a neutrino
(b) interpret the information neutrinos carry with them
(c) study the internal structure of a neutrino
(d) see neutrinos in distant regions of space
(e) detect the presence of cosmic neutrinos

6. the passage states that interactions between neutrinos and other matter are
(a) rare
(b) artificial
(c) undetectable
(d) unpredictable
(e) hazardous

7. the passage mentions which of the following as a reason that neutrinos are hard to detect?
(a) their pervasiveness in the universe
(b) their ability to escape from different regions of space
(c) their inability to penetrate dense matter
(d) the similarity of their structure to that of nucleons
(e) the infrequency of their interaction with other matter

8. according to the passage, the interaction of a neutrino with other matter can produce
(a) particles that are neutral and massive
(b) a form of radiation that permeates the universe
(c) inaccurate information about the site and circumstances of the neutrino's production
(d) charged particles and light
(e) a situation in which light and other forms of electromagnetic radiation are blocked

9. according to the passage, one of the methods used to establish the properties of neutrinos was
(a) detection of photons
(b) observation of the interaction of neutrinos with gamma rays
(c) observation of neutrinos that were artificially created
(d) measurement of neutrinos that interacted with particles of seawater
(e) experiments with electromagnetic radiation

ok guys im sorry but i have to post the OAnow before i lose them,,,,,
i got 2 incorrect

1. A
2. C
3. A
4. D
5. E
6. A
7. E
8. D
9. C

i hate when people do'nt post the OA, it leaves in guessing!!!!

Kudos [?]: 12 [0], given: 0

virtually everything astronomers known about objects outside   [#permalink] 15 Apr 2005, 23:30
Display posts from previous: Sort by

virtually everything astronomers known about objects outside

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.