GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 01 Jun 2020, 15:46

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the measure of the radius of the circle inscribed in a triangl

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Intern
Intern
User avatar
Affiliations: IIBA
Joined: 04 Sep 2010
Posts: 46
Location: India
Schools: HBS, Stanford, Stern, Insead, ISB, Wharton, Columbia
WE 1: Information Technology (Banking and Financial Services)
What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 15 Jun 2011, 20:43
2
10
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

65% (01:55) correct 35% (01:40) wrong based on 135 sessions

HideShow timer Statistics

What is the measure of the radius of the circle inscribed in a triangle whose sides measure 8, 15 and 17 units?

A. 8.5 units

B. 6 units

C. 3 units

D. 5 units

E. 12 units

Note: From the options provided, its easy to pick the answer right aways but I would want to know the computation steps.
Most Helpful Community Reply
Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 121
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 15 Jun 2011, 21:12
1
soaringAlone wrote:
What is the measure of the radius of the circle inscribed in a triangle whose sides measure 8, 15 and 17 units?

A. 8.5 units

B. 6 units

C. 3 units

D. 5 units

E. 12 units

Note: From the options provided, its easy to pick the answer right aways but I would want to know the computation steps.



Sides are 8, 15 and 17...thus it is right angle triangle Since 17^2 = 8^2 + 15^2
therefore, area = 1/2 * 15 * 8 = 60

We have to find in-radius
Therefore, area of triangle = S*r ....where S=semi-perimeter and r= in-radius
Now S=semi-perimeter = 17+15+8 /2 = 20
Thus , 60 =20*r
and hence r=in-radius= 3

Option C
General Discussion
Manager
Manager
User avatar
Joined: 11 Feb 2011
Posts: 102
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 18 Jun 2011, 18:40
vyassa,

dint get it below part .Is thia some standard formulas for semi perimeter .

We have to find in-radius
Therefore, area of triangle = S*r ....where S=semi-perimeter and r= in-radius
Now S=semi-perimeter = 17+15+8 /2 = 20
Thus , 60 =20*r
and hence r=in-radius= 3
Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 121
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 18 Jun 2011, 20:50
2
2
well there is a formula for area of the triangle and that is S*r....
In the given formula S is the semiperimeter i.e. half of the perimeter of the triangle. e.g. if a,b, and c are the sides of the triangle then perimeter will be a+b+c and semiperimeter will be (a+b+c)/2

Now, inradius is the radius of the circle that is inscribed in a triangle. In the given figure billow OP is an inradius.

Now, what all we know is three sides of the triangle, thus perimeter and area of triangle i.e. 60
Thus the easiest and fastest way is to apply the formula S*r = area of triangle
therefore, 20*r = 60 ...hence r = 3

Since r is the inradius i.e. radius of the inscribed circle, we have found out the answer.
Attachments

1.png
1.png [ 17.85 KiB | Viewed 35147 times ]

Manager
Manager
User avatar
Joined: 11 Feb 2011
Posts: 102
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 18 Jun 2011, 21:09
Splendid!!KUDOS...............Innovative approach dude.
Manager
Manager
avatar
Joined: 08 Sep 2010
Posts: 89
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 16 Jul 2011, 13:22
AnkitK, refer to Bunnel's post on Circles and Triangles.

Area = (P*r)/2 is a formula
Manager
Manager
User avatar
Joined: 14 Apr 2011
Posts: 157
Reviews Badge
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 17 Jul 2011, 12:36
Thanks, I was not aware of this formula!
Manager
Manager
User avatar
Joined: 07 Oct 2010
Posts: 121
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 18 Jul 2011, 02:35
puneetj wrote:
AnkitK, refer to Bunnel's post on Circles and Triangles.

Area = (P*r)/2 is a formula



This is same as s*r since p/2 = s
Intern
Intern
User avatar
Joined: 09 Dec 2012
Posts: 4
Concentration: Leadership, General Management
GMAT 1: 710 Q51 V34
WE: Marketing (Consulting)
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 19 Dec 2015, 01:46
3
1
This can be solved with linear equations (with 3 variables).

Lets assume AB=8, BC=15 and AC=17.

Here we can have a+b=8, b+c=15 and a+c=17 (as per tangents intersection)
b+c=15
-a+b=8
---------
c-a=7

c-a=7
c+a=17
---------
2c=24 or c=12 hence b=3
Attachments

P2 20151219.png
P2 20151219.png [ 7.11 KiB | Viewed 21390 times ]

Board of Directors
User avatar
D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 4996
Location: India
GPA: 3.5
WE: Business Development (Commercial Banking)
GMAT ToolKit User
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 31 Dec 2016, 08:51
soaringAlone wrote:
What is the measure of the radius of the circle inscribed in a triangle whose sides measure 8, 15 and 17 units?

A. 8.5 units

B. 6 units

C. 3 units

D. 5 units

E. 12 units

Note: From the options provided, its easy to pick the answer right aways but I would want to know the computation steps.


Area of △ is \(\sqrt{s ( s - a )( s - b )( s - c )}\) ; \(s = a+b+c/2\)

\(s = 8+15+17/2\)

Or, \(s = 20\)

So, Area = \(\sqrt{20( 20 - 8 )( 20 - 15 )( 20 - 17 )}\)

Or, Area = \(\sqrt{20*12*5*3}\)

Or, Area = \(\sqrt{20*12*5*3}\)

Or, Area = \(60\)


Radius of Incentre = \(\frac{Area}{s}\)

Radius of Incentre = \(\frac{60}{20}\)

Radius of Incentre = \(3\)

Hence, answer will be (C) 3

_________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Manager
Manager
User avatar
S
Joined: 05 Dec 2016
Posts: 227
Concentration: Strategy, Finance
GMAT 1: 620 Q46 V29
GMAT ToolKit User
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 19 Feb 2017, 23:13
I believe subject problem can be solved in easier way.
IAW properties of right triangles, radius of inscribed circle equals to sum of minor sides plus hypotenuse and the result devided by 2, so in this case it would be as follows:
(8+15-17)/2 = 3
Ans C
Intern
Intern
avatar
B
Joined: 17 Jul 2019
Posts: 7
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 22 Jul 2019, 01:35
I don't know whether it's necessary to know the relationship between an inscribed circle's radius and the right triangle it is inscribed in - however, i just wanted to mention that this particular problem could be solved thorough reasoning alone.

Just make your simplest possible possible 8-15-17 right triangle, let the short leg be the altitude. From here, the inscribed circle can't possibly have a diameter larger or equal to eight, as it wouldn't fit inside the triangle in that case. Thus the radius must be smaller than 4. We can conclude that 3 is the right answer.
SVP
SVP
avatar
D
Joined: 24 Nov 2016
Posts: 1571
Location: United States
Re: What is the measure of the radius of the circle inscribed in a triangl  [#permalink]

Show Tags

New post 24 Jan 2020, 06:20
soaringAlone wrote:
What is the measure of the radius of the circle inscribed in a triangle whose sides measure 8, 15 and 17 units?

A. 8.5 units
B. 6 units
C. 3 units
D. 5 units
E. 12 units


circle inscribed in a right triangle (8:15:17) has radius:
r=(a+b-hyp)/2=(8+15-17)/2=3
r=area/semiperimeter=(ab/2)/[(a+b+c)/2]=8*15/40=3

Ans (C)
GMAT Club Bot
Re: What is the measure of the radius of the circle inscribed in a triangl   [#permalink] 24 Jan 2020, 06:20

What is the measure of the radius of the circle inscribed in a triangl

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne