It is currently 18 Oct 2017, 08:36

Live Now:

GMAT Verbal Live on YouTube: Join Now!


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

When 51^25 is divided by 13, the remainder obtained is:

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
1 KUDOS received
Math Forum Moderator
avatar
B
Joined: 20 Mar 2014
Posts: 2676

Kudos [?]: 1723 [1], given: 792

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 29 Oct 2015, 18:16
1
This post received
KUDOS
Expert's post
atd86 wrote:
How about this:
51 is 3*17, or 3*(13 + 4)
if I distribute the 25 to each, I get (3^25)(13 + 4)^25
The units digit of 3^25 will be 3 and since we don't care about that 13, we only need to look at the 4 (I'm shaky on the binomial theorem, but this seems to be the pattern).
Well, the units digit of 4^25 is 4, so I multiplied the units digit of each and got 12.

Can someone tell me if my logic makes sense and can be applied to other problems of this nature?

Happy Studying!


I dont think this method will work on other questions. All these questions can be worked in the following manner:

For finding remainder of 51^25 when divided by 13, make sure to express 51 as a multiple of 13 \(\pm\) 1 ---> 51=52-1 ---> 51^25 = (52-1)^25

By binomial theorem, (a+b)^n = a^n*b^0+a^(n-1)*b^1+ a^(n-2)*b^2......a^(2)*b^(n-2)+a^1*b^(n-1)+a^0*b^n

Thus for (52-1)^25 , all terms except the last (-1)^25 will be multiples of 52 ---> multiple of 13 and hence we only need to care about (-1)^25 = remainder when -1 is divided by 13 is = remainder when 13-1= 12 is divided by 13, giving you 12 as the remainder.

This is a method that can be applied to all such questions.

Hope this helps.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Kudos [?]: 1723 [1], given: 792

Intern
Intern
avatar
Joined: 29 May 2015
Posts: 6

Kudos [?]: 2 [0], given: 161

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 11 Jan 2016, 05:53
VeritasPrepKarishma wrote:
Bunuel wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


\(51^{25}=(52-1)^{25}\), now if we expand this expression all terms but the last one will have \(52=13*4\) in them, thus will leave no remainder upon division by 13, the last term will be \((-1)^{25}=-1\). Thus the question becomes: what is the remainder upon division -1 by 13? The answer to this question is 12: \(-1=13*(-1)+12\).

Answer: A.



Hey Bunuel,

I am trying to understand this concept what happens if

66^25 is divided by 13 - then how will the above method work?

[65 + 1]^25 then will remainder be 1?



Hi Karishma and Bunuel,

Your guide on Binomial Theorem is AMAZING!! I wish i had gone through this before taking my GMAT for the first time.
I have one question for you which I can't seem to solve. this is in regards to base of powers that are negative - and how to compute them.
Can you provide a general rule for this?

E.g. What is the remainder when 10^5 is divided by 13?

From binomial method, we can take (13-3)^5/13
Next, we're left with (-3)^5/13

Two things - 1st, if I go the long route and take patterns then
3^1 / 13 = R3
3^2 / 13 = R4
3^3 / 13 = R1
and the pattern repeats, in 3's.

so, now, (-3)^5, i know the answer is R4.

However, finding the pattern is time-consuming. Can you help me understand how I can use the binomial theorem for the negative base?
(-3)^5 / 13

THANK YOU!!

Kudos [?]: 2 [0], given: 161

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7674

Kudos [?]: 17347 [1], given: 232

Location: Pune, India
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 11 Jan 2016, 23:39
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
naveenq wrote:
E.g. What is the remainder when 10^5 is divided by 13?

From binomial method, we can take (13-3)^5/13
Next, we're left with (-3)^5/13

Two things - 1st, if I go the long route and take patterns then
3^1 / 13 = R3
3^2 / 13 = R4
3^3 / 13 = R1
and the pattern repeats, in 3's.

so, now, (-3)^5, i know the answer is R4.

However, finding the pattern is time-consuming. Can you help me understand how I can use the binomial theorem for the negative base?
(-3)^5 / 13

THANK YOU!!


(-3)^5/13
Since the power is odd, the negative sign remains. Don't worry about it just yet.
-3^5/13

Note that 3^3 = 27 which is 1 more than a multiple of 13.

-27 * 9/13
-(26+1) * 9/13
Remainder is -9/13

So we have a remainder of -9. This means that remainder is actually 4.

For more on negative remainders, see: http://www.veritasprep.com/blog/2014/03 ... -the-gmat/
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17347 [1], given: 232

Intern
Intern
avatar
Joined: 29 May 2015
Posts: 6

Kudos [?]: 2 [0], given: 161

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 12 Jan 2016, 19:04
VeritasPrepKarishma

Thank you for the quick response!
That makes sense - essentially, in these questions, I need to find a way to get to +/- 1 from the divisor itself, or from a multiple of that divisor. Even if that means following binomial theorem more than once, like in the example above.

Thanks for all your help - YOU ROCK!! :)

Kudos [?]: 2 [0], given: 161

Manager
Manager
avatar
B
Joined: 08 Jan 2015
Posts: 86

Kudos [?]: 9 [0], given: 53

GMAT ToolKit User
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 10 Aug 2016, 08:55
Has anyone seen this type of question on GMAT?

Kudos [?]: 9 [0], given: 53

Intern
Intern
avatar
B
Joined: 01 Sep 2016
Posts: 9

Kudos [?]: 1 [0], given: 40

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 05 Oct 2016, 11:56
There is no need for all that math

for example

the rest of 5 divided by 3 (5/3) is 2.

5*5/3 has remainder 1

5*5*5/3 has remainder 2

and that goes on forever, the remainder will be 2 when the power is odd and 1 when the power is even.

So if you apply this to the question

51/13 has remainder 12

since it is 51 to 25, the power is odd, so the remainder will be 12 as well.

you can check this on excel if you want :P

Kudos [?]: 1 [0], given: 40

Intern
Intern
avatar
B
Joined: 10 Feb 2011
Posts: 3

Kudos [?]: [0], given: 2

When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 04 Dec 2016, 11:49
VeritasPrepKarishma wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

(Had to delete the veritas link since I have never posted before on GMAT Club)

Once you go through it, this question should be very easy for you.


I haven't been able to go through all the replies on this post here and I don't consider myself great at math, but wanted to look at an alternative way of doing this question and remaining within the domains of the GMAT topics (I'd think it would be harsh if the people there started checking us on advanced topics like Binomial Theorem).


So let's do prime factorization. 51^25 = (3*17)^25 = (3^25)*(17^25)

Using the Last Digit of a Power (pg 14 of GMAT Club Math Book for people unaware of this method), powers of 3 have cyclicality of 4, therefore last digit (3^25) = last digit(3^1)
17^25 would basically check cyclicality of the power of 7 (which is 4), i.e. last digit (17^25) = last digit (17^1). We can therefore simply write (3*17)^25 as (3*17) or 51. When you divide 51/13, you get 12 as the remainder. I can't judge if it is as quicker as the method above, but I definitely think it is simpler to understand.

Kudos [?]: [0], given: 2

Intern
Intern
avatar
B
Joined: 22 Jul 2016
Posts: 12

Kudos [?]: 1 [0], given: 2

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 04 Dec 2016, 20:13
I don't get 12 when I plug (51^25)/13 in to a calculator to see what comes out. What am I misunderstanding about the question?

Kudos [?]: 1 [0], given: 2

Expert Post
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7674

Kudos [?]: 17347 [0], given: 232

Location: Pune, India
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 04 Dec 2016, 20:59
Expert's post
1
This post was
BOOKMARKED
DonnieDrastic wrote:
I don't get 12 when I plug (51^25)/13 in to a calculator to see what comes out. What am I misunderstanding about the question?


There are two different ways of expressing the result of a division:

Say, I tell you the following: Divide 11 by 4. What do you get?

You could answer me with one of the following:

Case 1: You could say, “I get 2.75”

Case 2: You could say, “I get 2 as the quotient and 3 as the remainder.”

Either ways, you are correct. 11/4 = (2 ¾)

When you use the decimal form, you get a .75 which you add to 2 to give you 2.75. This .75 is nothing but the way you express the remainder 3. When you divide 11 by 4, 4 goes into 11 two times and then 3 is left over. When 4 goes into 3, you get 0.75 which is ¾. That is the reason why you can write 11/4 as (2 ¾) in mixed fractions.

The calculator gives you the result of case 1. Anyway, the calculator will give you an approximate value.
This question asks you for the remainder, as in case 2.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17347 [0], given: 232

Expert Post
Veritas Prep GMAT Instructor
User avatar
G
Joined: 16 Oct 2010
Posts: 7674

Kudos [?]: 17347 [0], given: 232

Location: Pune, India
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 04 Dec 2016, 22:05
omairanw wrote:
VeritasPrepKarishma wrote:
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0


The method used by Bunuel above is the best way to get to the answer. Some time back, I wrote a post detailing the method. Here is the link:

(Had to delete the veritas link since I have never posted before on GMAT Club)

Once you go through it, this question should be very easy for you.


I haven't been able to go through all the replies on this post here and I don't consider myself great at math, but wanted to look at an alternative way of doing this question and remaining within the domains of the GMAT topics (I'd think it would be harsh if the people there started checking us on advanced topics like Binomial Theorem).


So let's do prime factorization. 51^25 = (3*17)^25 = (3^25)*(17^25)

Using the Last Digit of a Power (pg 14 of GMAT Club Math Book for people unaware of this method), powers of 3 have cyclicality of 4, therefore last digit (3^25) = last digit(3^1)
17^25 would basically check cyclicality of the power of 7 (which is 4), i.e. last digit (17^25) = last digit (17^1). We can therefore simply write (3*17)^25 as (3*17) or 51. When you divide 51/13, you get 12 as the remainder. I can't judge if it is as quicker as the method above, but I definitely think it is simpler to understand.


Cyclicity can help you find the remainder only in case of division by 2, 5 or 10. Check this post to know why:
https://www.veritasprep.com/blog/2015/1 ... questions/

The last digit will not decide the remainder in every case in case the divisor is other than 2, 5 or 10.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199

Veritas Prep Reviews

Kudos [?]: 17347 [0], given: 232

Intern
Intern
avatar
B
Joined: 10 Aug 2015
Posts: 11

Kudos [?]: [0], given: 0

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 19 Dec 2016, 05:28
Hi,

I went through the solution, I went through the Blog and I went through some other discussions as well.
But I am unable to understand the Remainder Concept.

You guys are saying that -1/13 gives the remainder as 12.

I just don't understand how this works.

I'll give you my chain of thoughts and how I am working things out:

Following are the REMAINDERS when divided by 13:

14/13 => R=1
13/13 => R=0
12/13 => R=12
11/13 => R=11
.
.
.
.
2/13 => R=2
1/13 => R=1
0/13 => R=0
-1/13 => R=-1
-2/13 => R=-2
.
.
.
-12/13 => R=-12
-13/13 => R=0
-14/13 => R=-1

Thus can you please make me understand how is: -1/13 = 12 ??? It is clearly -1
I'm unable to understand what I am missing?

Please let me know.

Thanks,
Arijit

Kudos [?]: [0], given: 0

Intern
Intern
avatar
B
Joined: 02 Oct 2016
Posts: 36

Kudos [?]: 11 [0], given: 20

Schools: HEC Dec '17
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 24 Jan 2017, 01:59
Bunuel

Hi Bunuel, I solved this using the remainder and cyclicity method and got the correct answer. Can you please tell me if this is just a coincidence?

By applying cyclicity of 4: 51^25 ~ 51^1
Therefore, 51/13 ---> Remainder = 12

Kudos [?]: 11 [0], given: 20

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41885

Kudos [?]: 128724 [0], given: 12182

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 24 Jan 2017, 02:42
Vaidya wrote:
Bunuel

Hi Bunuel, I solved this using the remainder and cyclicity method and got the correct answer. Can you please tell me if this is just a coincidence?

By applying cyclicity of 4: 51^25 ~ 51^1
Therefore, 51/13 ---> Remainder = 12


The question is how do you know the cycle? In fact the remainder repeats in blocks of two here:

The remainder of 51^1 divided by 13 is 12;
The remainder of 51^2 divided by 13 is 1;
The remainder of 51^3 divided by 13 is 12;
The remainder of 51^4 divided by 13 is 1;
The remainder of 51^5 divided by 13 is 12;
...
The remainder of 51^odd divided by 13 is 12;
The remainder of 51^even divided by 13 is 1.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128724 [0], given: 12182

Intern
Intern
avatar
B
Joined: 02 Oct 2016
Posts: 36

Kudos [?]: 11 [0], given: 20

Schools: HEC Dec '17
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 24 Jan 2017, 02:51
Bunuel wrote:
Vaidya wrote:
Bunuel

Hi Bunuel, I solved this using the remainder and cyclicity method and got the correct answer. Can you please tell me if this is just a coincidence?

By applying cyclicity of 4: 51^25 ~ 51^1
Therefore, 51/13 ---> Remainder = 12


The question is how do you know the cycle? In fact the remainder repeats in blocks of two here:

The remainder of 51^1 divided by 13 is 12;
The remainder of 51^2 divided by 13 is 1;
The remainder of 51^3 divided by 13 is 12;
The remainder of 51^4 divided by 13 is 1;
The remainder of 51^5 divided by 13 is 12;
...
The remainder of 51^odd divided by 13 is 12;
The remainder of 51^even divided by 13 is 1.



Correct me if I'm wrong. I believe that it is not necessary to know the exact cyclicity of any number, since a cyclicity of 2 will also follow the cylicity of 4, ie, in this case, it does not matter if the cyclicity is 2 or 4 since they will be equal anyway. And this applies to any number which follows a cyclicity of 2. 2nd and 4th WILL be equal.

Kudos [?]: 11 [0], given: 20

Intern
Intern
avatar
B
Joined: 08 Jan 2017
Posts: 1

Kudos [?]: [0], given: 1

Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 04 Feb 2017, 13:58
LM wrote:
When 51^25 is divided by 13, the remainder obtained is:

A. 12
B. 10
C. 2
D. 1
E. 0



This may sound over simplistic and maybe not transferable to other problems but if you simply divide 51/13 you get a reminder of 12. 51= 3(13) + 12

Kudos [?]: [0], given: 1

Manager
Manager
avatar
B
Joined: 09 Oct 2016
Posts: 84

Kudos [?]: 7 [0], given: 6

Location: United States
Schools: Kellogg '20, Duke '20
GMAT 1: 740 Q49 V42
GPA: 3.49
Reviews Badge
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 05 Apr 2017, 16:36
Just find the remainder out of the base number. Its not that complicated guys

Kudos [?]: 7 [0], given: 6

Manager
Manager
avatar
B
Joined: 21 Feb 2017
Posts: 86

Kudos [?]: 3 [0], given: 23

GMAT ToolKit User
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 22 Jun 2017, 08:03
Hi,
51^ 25 will have unit digit 1 and 1 divided by 13 will have remainder 1. So answer should be D.
Now any power of 1 will always have unit digit one.

Please correct me where I am making mistake?

Is it not correct that any power of 1 will always have unit digit one?

Thanks.

Kudos [?]: 3 [0], given: 23

Manager
Manager
avatar
B
Joined: 09 Oct 2016
Posts: 84

Kudos [?]: 7 [0], given: 6

Location: United States
Schools: Kellogg '20, Duke '20
GMAT 1: 740 Q49 V42
GPA: 3.49
Reviews Badge
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 22 Jun 2017, 08:44
goalMBA1990 wrote:
Hi,
51^ 25 will have unit digit 1 and 1 divided by 13 will have remainder 1. So answer should be D.
Now any power of 1 will always have unit digit one.

Please correct me where I am making mistake?

Is it not correct that any power of 1 will always have unit digit one?

Thanks.


Think about this way: what is 51/13?

Posted from my mobile device

Posted from my mobile device

Kudos [?]: 7 [0], given: 6

Manager
Manager
avatar
B
Joined: 21 Feb 2017
Posts: 86

Kudos [?]: 3 [0], given: 23

GMAT ToolKit User
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 22 Jun 2017, 10:49
gmathopeful19 wrote:
goalMBA1990 wrote:
Hi,
51^ 25 will have unit digit 1 and 1 divided by 13 will have remainder 1. So answer should be D.
Now any power of 1 will always have unit digit one.

Please correct me where I am making mistake?

Is it not correct that any power of 1 will always have unit digit one?

Thanks.


Think about this way: what is 51/13?

Posted from my mobile device

Posted from my mobile device


Can you please explain in detail?

Kudos [?]: 3 [0], given: 23

Manager
Manager
avatar
B
Joined: 21 Feb 2017
Posts: 86

Kudos [?]: 3 [0], given: 23

GMAT ToolKit User
Re: When 51^25 is divided by 13, the remainder obtained is: [#permalink]

Show Tags

New post 22 Jun 2017, 11:15
goalMBA1990 wrote:
Hi,
51^ 25 will have unit digit 1 and 1 divided by 13 will have remainder 1. So answer should be D.
Now any power of 1 will always have unit digit one.

Please correct me where I am making mistake?

Is it not correct that any power of 1 will always have unit digit one?

Thanks.


Hi Bunuel,
Can you please explain where am I making mistake?

Thanks.

Kudos [?]: 3 [0], given: 23

Re: When 51^25 is divided by 13, the remainder obtained is:   [#permalink] 22 Jun 2017, 11:15

Go to page   Previous    1   2   3   4   5    Next  [ 87 posts ] 

Display posts from previous: Sort by

When 51^25 is divided by 13, the remainder obtained is:

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.