GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 Feb 2019, 07:07

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# When a certain tree was first planted, it was 4 feet tall,

Author Message
TAGS:

### Hide Tags

Manager
Joined: 25 Jul 2012
Posts: 67
Location: United States
Re: 4 feet tall tree ?  [#permalink]

### Show Tags

09 Sep 2013, 08:25
1
End of the 6th year, the tree was 1/5 taller than it was at the end of the 4th year

Given:
4th yr: $$4+4x$$
6th yr: $$4+6x$$
$$\frac{1}{5} = .2$$

in other words, the 6th year it was 1.2 bigger than the 4th year

$$4+6x = 1.2(4+4x)$$

$$4+6x = 4.8+4.8x$$

$$1.2x = .8$$

$$x=\frac{.8}{1.2} ---> x=\frac{8}{12}$$

$$x=\frac{2}{3}$$
_________________

If my post has contributed to your learning or teaching in any way, feel free to hit the kudos button ^_^

Manager
Joined: 29 Aug 2013
Posts: 74
Location: United States
GMAT 1: 590 Q41 V29
GMAT 2: 540 Q44 V20
GPA: 3.5
WE: Programming (Computer Software)
Re: When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

09 Sep 2013, 11:15
gameCode wrote:
When a certain tree was first planted, it was 4 feet tall, and the height of the tree increased by a constant amount each year for the next 6 years. At the end of the 6th year, the tree was 1/5 taller than it was at the end of the 4th year. By how many feet did the height of the tree increase each year?

A. 3/10
B. 2/5
C. 1/2
D. 2/3
E. 6/5

if 4th year is say x
and 6th year is x + x/5, the difference = x/5 for 2 years and hence for each year it will be x/10.

now if 4th year is x then the start of 1st year will be (x-(4x/10)) i.e. x- (2x/5) = 4 i.e. x = 20/3.

Therefore x/10 i.e. for each year = 2/3
Manager
Joined: 15 Aug 2013
Posts: 244
When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

24 Aug 2014, 12:10
Bunuel wrote:
gameCode wrote:
When a certain tree was first planted, it was 4 feet tall, and the height of the tree increased by a constant amount each year for the next 6 years. At the end of the 6th year, the tree was 1/5 taller than it was at the end of the 4th year. By how many feet did the height of the tree increase each year?

A. 3/10
B. 2/5
C. 1/2
D. 2/3
E. 6/5

There's something particular with the answer of this one which i don't understand, hence the posting.

Let the rate of increase be $$x$$ feet per year.

At the end of the 4th year the height was $$4+4x$$ and at the of the 6th year the height was $$4+6x$$, which was "1/5 taller than it was at the end of the 4th year" --> $$(4+4x)+\frac{1}{5}(4+4x)=4+6x$$ --> $$\frac{1}{5}(4+4x)=2x$$ --> $$x=\frac{2}{3}$$.

Hi Bunuel,

I used a different approach which led me to the wrong answer. I can't seem to figure out why?

1)Difference between EOY 6 and EOY 4 is 1/5, therefore, Y6=(6/5)Y4
2)By the same token, EOY 2 = (6/5) EOY0, therefore EOY2 = (6/5)*4
3)Since it's a constant increase every year, (24/5) / (2) since we are only concerned about the increase per year -- this equals 12/5.

Why is this wrong? If it's a constant increase, it's increasing by the SAME amount each year correct. It's NOT compounding from the previous year. Am I correct? By that theory, shouldn't my method work?

On another note -- if the above was an increase to the previous year, meaning, compounded, how would the equation change?

Thanks!
Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 675
Location: United States (CA)
Age: 39
GMAT 1: 770 Q47 V48
GMAT 2: 730 Q44 V47
GMAT 3: 750 Q50 V42
GRE 1: Q168 V169
WE: Education (Education)
When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

05 Apr 2016, 19:40
Attached is a visual that should help. Notice that multiplying by $$\frac{6}{5}$$ is an easier way to get to "$$\frac{1}{5}$$ greater than"
Attachments

Screen Shot 2016-04-05 at 8.34.56 PM.png [ 69.98 KiB | Viewed 1736 times ]

_________________

Harvard grad and 99% GMAT scorer, offering expert, private GMAT tutoring and coaching worldwide since 2002.

One of the only known humans to have taken the GMAT 5 times and scored in the 700s every time (700, 710, 730, 750, 770), including verified section scores of Q50 / V47, as well as personal bests of 8/8 IR (2 times), 6/6 AWA (4 times), 50/51Q and 48/51V (1 question wrong).

You can download my official test-taker score report (all scores within the last 5 years) directly from the Pearson Vue website: https://tinyurl.com/y7knw7bt Date of Birth: 09 December 1979.

GMAT Action Plan and Free E-Book - McElroy Tutoring

Contact: mcelroy@post.harvard.edu (I do not respond to PMs on GMAT Club.)

...or find me on Reddit: http://www.reddit.com/r/GMATpreparation

Director
Joined: 26 Oct 2016
Posts: 636
Location: United States
Schools: HBS '19
GMAT 1: 770 Q51 V44
GPA: 4
WE: Education (Education)
Re: When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

14 Jan 2017, 13:17
Let x be the height of the tree increase each year, then:
[4+6x-(4+4x)]/(4+4x) = 1/5
10x = 4+ 4x
x= 2/3
_________________

Thanks & Regards,
Anaira Mitch

Intern
Joined: 27 Nov 2013
Posts: 21
Location: Peru
GMAT 1: 770 Q49 V47
GPA: 3.99
Re: When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

10 Apr 2017, 07:56
1
I was surprised to see that everyone has taken an algebraic approach. The problem isn't that complicated and can be solved with no algebra at all.

We will simply run two scenarios based on answer choices (B) and (D). If either of them turns out to be the answer, then we're golden. This will happen 40% of the time. Otherwise, we should be able to see whether the answer lies between (B) and (D) or whether it is an outlier.

To make the scenario easier, I will reclassify the original height for answer choice (B) as 20/5 and for answer choice (D) as 12/3, although I will not write the denominator each time for added speed and simplicity.

Scenario (B)

Year 0—20/5
Year 1—22
Year 2—24
Year 3—26
Year 4—28
Year 5—30
Year 6—32

Since 1/5 of 28 (year 4) is 5 and change, we can see that one fifth more will be 33 and change. So (B) is not the answer—it's too small.

Scenario (D)
Year 0—12/3
Year 1—14
Year 2—16
Year 3—18
Year 4—20
Year 5—22
Year 6—24

Since 1/5 of 20 (year 4) is 4, (D) is the answer. Had (D) not been the answer, we would have been able to determine which of the other three [(A), (C), or (E)] was the answer with no difficulty.
_________________

GMAT Instructor
ApexGMAT
http://www.apexgmat.com/

Target Test Prep Representative
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2827
Re: When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

11 Dec 2017, 10:58
gameCode wrote:
When a certain tree was first planted, it was 4 feet tall, and the height of the tree increased by a constant amount each year for the next 6 years. At the end of the 6th year, the tree was 1/5 taller than it was at the end of the 4th year. By how many feet did the height of the tree increase each year?

A. 3/10
B. 2/5
C. 1/2
D. 2/3
E. 6/5

When a certain tree was first planted, it was 4 feet tall, and the height of the tree increased by a constant amount each year for the next 6 years. Since we know that the growth is by a constant amount, we have a linear growth problem. Thus, we can let x = the yearly growth amount in feet:

Starting height = 4

Height after year one = 4 + x

Height after year two = 4 + 2x

Height after year three = 4 + 3x

Height after year four = 4 + 4x

Height after year five = 4 + 5x

Height after year six = 4 + 6x

We are also given that at the end of the 6th year the tree was 1/5 taller than it was at the end of the 4th year. This means the height of the tree at the end of the 6th year is 6/5 times as tall as its height at the end of the 4th year. Thus, we can create the following equation:

(6/5)(4 + 4x) = 4 + 6x

To eliminate the fraction 6/5, we multiply the entire equation by 5:

6(4 + 4x) = 20 + 30x

24 + 24x = 20 + 30x

6x = 4

x = 4/6 = 2/3 feet

_________________

Jeffery Miller

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

Non-Human User
Joined: 09 Sep 2013
Posts: 9890
Re: When a certain tree was first planted, it was 4 feet tall,  [#permalink]

### Show Tags

26 Jan 2019, 18:40
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: When a certain tree was first planted, it was 4 feet tall,   [#permalink] 26 Jan 2019, 18:40

Go to page   Previous    1   2   [ 28 posts ]

Display posts from previous: Sort by