salsal wrote:
Which of the following fractions has a decimal equivalent that is a terminating decimal?
a) 10/189
b) 15/196
c) 16/225
d) 25/144
e) 39/128
THEORY:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal
if and only \(b\) (denominator) is of the form
\(2^n5^m\), where \(m\) and \(n\) are non-negative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^2\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\).
Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.
For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal.
We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced.
BACK TO THE QUESTION:Only option E (when reduced to its lowest form) has the denominator of the form \(2^n5^m\): 39/128=
39/2^7.
Answer: E.
Questions testing this concept:does-the-decimal-equivalent-of-p-q-where-p-and-q-are-89566.htmlany-decimal-that-has-only-a-finite-number-of-nonzero-digits-101964.htmlif-a-b-c-d-and-e-are-integers-and-p-2-a3-b-and-q-2-c3-d5-e-is-p-q-a-terminating-decimal-125789.html700-question-94641.htmlis-r-s2-is-a-terminating-decimal-91360.htmlpl-explain-89566.htmlwhich-of-the-following-fractions-88937.htmlHope it helps.
I'm confused, 128 is 2^7, you said it had to be 2^n*5^m....there is no 5^m in 128