GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 25 May 2020, 07:23 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Which of the following function follows the rule: f(a + b) = f(a)*f(b)

Author Message
TAGS:

### Hide Tags

Intern  S
Joined: 18 Feb 2017
Posts: 14
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
IMO E.

f(a+b)=f(a)∗f(b).
Let's consider a=2 and b=3 for all the options.

1. f(x)=x^2+1
f(2)= 5 and f(3) = 10. f(2+3)= 26 =/= 50. Incorrect option.

2. f(x)=5^(2x)/3
f(2)= 5^(4)/3 and f(3)= 5^(6x)/3. f(5) = 5^(10x)/3 =/= 5^(10x)/9. Incorrect option.

3. f(x)=3x+2
f(2)= 8, f(3)= 11, f(5)=17 =/= 88. Incorrect option.

4. f(x)=√2x
f(2)= 2, f(3)= √6, f(5)= √10 =/= 2√6. Incorrect option.

5. f(x)=24^x.
f(2) =24^2 , f(3)=24^3, f(5) = 24^5 ==24^5. Correct option. .
CEO  V
Joined: 03 Jun 2019
Posts: 2889
Location: India
GMAT 1: 690 Q50 V34 WE: Engineering (Transportation)
Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)

$$A. f(x)=x^2+1$$
$$f(a+b)= (a+b)^2+1$$
$$f(a)= a^2+1$$
$$f(b)= b^2+1$$
$$f(a).f(b)= (a^2+1)(b^2+1)$$
f(a+b)<>f(a).f(b)

B. f(x)=5^2x/3
f(a+b)= 5^2(a+b)/3
f(a)= 5^2a/3
f(b)=5^2b/3
f(a).f(b)= 5^2(a+b)/9
f(a+b)<>f(a).f(b)

C. f(x)=3x+2
f(a+b)= 3(a+b)+2 = 3a+3b+2
f(a)= 3a+2
f(b)= 3b+2
f(a).f(b)= (3a+2)(3b+2) = 9ab+6b+6a+4
f(a+b)<>f(a).f(b)

$$D. f(x)=\sqrt{2x}$$
$$f(a+b)= \sqrt{2(a+b)}$$
$$f(a)=\sqrt{2a}$$
$$f(b)=\sqrt{2b}$$
$$f(a).f(b)=2\sqrt{ab}$$
f(a+b)<>f(a).f(b)

E. f(x)=24^x
f(a+b)=24^(a+b)
f(a)=24^a
f(b)=24^b
f(a).f(b)=24^a.24^b = 24^(a+b) = f(a+b)

IMO E
_________________
Kinshook Chaturvedi
Email: kinshook.chaturvedi@gmail.com

Originally posted by Kinshook on 08 Jul 2019, 08:15.
Last edited by Kinshook on 08 Jul 2019, 08:21, edited 2 times in total.
Intern  S
Joined: 10 Aug 2016
Posts: 23
Location: India
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)

A. f(x)=x^2+1
f(a+b) = (a+b)^2 + 1
f(a)*f(b) = (a^2 + 1)*(b^2 + 1)
clearly not equal. incorrect.

B. f(x)=(5^2x)/3
f(a+b) = (5^2(a+b))/3
f(a)*f(b) = (5^2a)/3 * (5^2b)/3 = (5^2(a+b))/9
Not equal. Incorrect.

C. f(x)=3x+2
f(a+b) = 3a + 3b +2
f(a)*f(b) = (3a+2)*(3b+2)
Not equal. Incorrect.

D. f(x)=sqrt(2x)
f(a+b) = sqrt(2(a+b))
f(a)*f(b) = sqrt(2a)*sqrt(2b) = 2*sqrt(ab)
Not equal. Incorrect

E. f(x)=24^x
f(a+b) = 24^(a+b)
f(a)*f(b) = (24^a)*(24^b) = 24^(a+b).
Equal. Correct.

Manager  G
Joined: 18 Jun 2013
Posts: 103
Location: India
Concentration: Technology, General Management
GMAT 1: 690 Q50 V35
GPA: 3.2
WE: Information Technology (Consulting)
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)?

Method 1: As per the rule that needs to be true, we can foresee that if the variable is in exponentials then a mere multiplication can simply lead to addition and the rule can hold true for the equation.

As per this, we see that the options 2 and 5 are the only ones where the variable is completely in the exponentials.

In option 2 the denominator will not allow the rule to hold true as in the RHS it will multiply. Hence option 2 is not correct.

In option 5, we have no other issues and the variable in the exponentials will simply add up on multiplication of the entities and hence the rule will always hold true.

Now, we can plug in some sample values and see if our analysis is correct and mark the correct answer which is option E.

Method 2: Putting values. This method is fool proof but may take you a couple of minutes to solve this question.

Option 1: f(x)=x^2+1

f(1 + 1) = f(1) = 1^2 + 1 = 5
f(1) = 1^2 + 1 = 2

If rule is true here then,
f(1 + 1) = f(1) * f(1)

However,
5 <> 2

Hence,
f(1 + 1) <> f(1) * f(1)

Option 1 is not correct.

Option 2: f(x) = (5^(2x))/3

f(1 + 1) = f(2) = (5^(2*2)) / 3 = (5^4) / 3 = 625/3
f(1) = (5^(2*1)) / 3 = 25/3

If rule is true here then,
f(1 + 1) = f(1) * f(1)

625/3 = 25/3 * 25/3 -> Rule holds here.

f(1 + 0) = f(1) = (5^(2*1)) / 3 = 25/3
f(1) = (5^(2*1)) / 3 = 25/3
f(0) = (5^(2*0)) / 3 = 1/3

However,
25/3 <> 25/3 * 1/3

Now,
f(1 + 1) = f(1) * f(1);
BUT, f(1 + 0) <> f(1) * f(0);

Hence, rule holds true sometimes but not always for this option.

Option 2 is not correct.

Option 3: f(x) = 3x + 2

f(1 + 1) = f(2) = 3*2 + 2 = 8
f(1) = 3*1 + 2 = 5

If rule is true here then,
f(1 + 1) = f(1) * f(1)

However,
8 <> 5 * 5

Hence,
f(1 + 1) <> f(1) * f(1)

Option 3 is not correct.

Option 4: f(x) = sqrt(2*x)

Consider,
f(1 + 1) = f(2) = sqrt(2*2) = 2
f(1) = sqrt(2*1) = sqrt(2)

If rule is true here then,
f(1 + 1) = f(1) * f(1)

And,
2 = sqrt(2) * sqrt(2)

Now consider,
f(2 + 3) = f(5) = sqrt(2*5) = sqrt(10)
f(2) = sqrt(2*2) = 2
f(3) = sqrt(2*3) = sqrt(6)

However,
sqrt(10) <> 2 * sqrt(6)

Hence,
f(1 + 1) <> f(1) * f(1)

Option 4 is not correct.

Option 5: f(x) = 24^x

Consider,
f(1 + 1) = f(2) = 24^2
f(1) = 24^1

If rule is true here then,
f(1 + 1) = f(1) * f(1)

And,
24^2 = 24^1 * 24^1

Consider,
f(2 + 3) = f(5) = 24^5
f(2) = 24^2
f(3) = 24^3

If rule is true here then,
f(1 + 1) = f(1) * f(1)

And,
24^5 = 24^2 * 24^3

Hence Option 5 or Option E is correct.
Director  V
Status: Manager
Joined: 27 Oct 2018
Posts: 803
Location: Egypt
GPA: 3.67
WE: Pharmaceuticals (Health Care)
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
for $$f(x)=x^2+1$$:
f(a+b) = $$(a+b)^2 + 1 = a^2 + b^2 + 2ab + 1$$
f(a)∗f(b) = $$a^2 + 1 + b^2 + 1 = a^2 + b^2 + 2$$ --> not equal for all values

for $$f(x)=\frac{5^{2x}}{3}$$:
f(a+b) = $$\frac{5^{2(a+b)}}{3} = \frac{5^{2a}5^{2b}}{3}$$
f(a)∗f(b) = $$\frac{5^{2a}}{3}*\frac{5^{2b}}{3} = \frac{5^{2a}5^{2b}}{9}$$--> not equal for all values

for $$f(x)=3x+2$$:
f(a+b) = $$3(a+b) + 2 = 3a + 3b + 2$$
f(a)∗f(b) = $$(3a+2)(3b+2) = 9ab + 6b + 6a + 4$$ --> not equal for all values

for f(x)= $$\sqrt{{2x}}$$:
f(a+b) = $$\sqrt{{2(a+b)}} = \sqrt{{2a+2b}}$$
f(a)∗f(b) = $$\sqrt{{2a}}* \sqrt{{2b}} = \sqrt{{4ab}} = 2\sqrt{{ab}}$$ --> not equal for all values

for $$f(x)= 24^x$$:
f(a+b) = $$24^{a+b}$$
f(a)∗f(b) = $$24^{a}*24^{b} = 24^{a+b}$$ --> equal

E
Manager  P
Joined: 31 Jul 2017
Posts: 191
Location: India
GMAT 1: 500 Q47 V15
GPA: 3.4
WE: Information Technology (Computer Software)
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)?

A. f(x)=$$x^2+1$$

B. f(x)=$$5^2^x * 3$$

C. f(x)=3x+2

D. f(x)=$$\sqrt{2x}$$

E. f(x)=$$24^x$$

A - f(a) = $$a^2 +1$$ f(b) = $$b^2 +1$$ f(a+b) = $$(a+b)^2 +1$$.
f(a) * f(b) = $$a^2*b^2 +a^2+b^21$$
Clearly f(a+b) is not equal to f(a)∗f(b).

B - f(a)=$$5^2^a * 3$$ f(b)=$$5^2^b * 3$$ f(a+b)=$$5^2^(a+b) * 3$$.
f(a) * f(b) = $$5^2^a+b * 9$$
Clearly f(a+b) is not equal to f(a)∗f(b).

C - f(a)=$$3a+2$$ f(b)=$$3b+2$$ f(a+b)=$$3(a+b)+2$$.
f(a) * f(b) = $$9ab+6a+6b+4$$
Clearly f(a+b) is not equal to f(a)∗f(b).

D - f(a)=$$\sqrt{2a}$$
f(b)=$$\sqrt{2b}$$
f(a+b)=$$\sqrt{2(a+b)}$$
f(a)*f(b)=$$\sqrt{4ab}$$
Clearly f(a+b) is not equal to f(a)∗f(b).

E - f(x)=$$24^x$$

f(a)=$$24^a$$
f(b)=$$24^b$$
f(a+b)=$$24^(a+b)$$
f(a) * f(b)=$$24^(a+b)$$.
Clearly f(a+b) is equal to f(a)∗f(b)

Hence E
Manager  G
Joined: 28 May 2019
Posts: 74
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)?

We have to look for the option in which addition and multiplication might result in same value.
If we look at the answer choices we can eliminate A, C and D easily. But to make sure we will put value of x and check.

A. f(x)=x^2+1
f(a+b)= (a+b)^2+1
f(a)*f(b) = (a^2 + 1)* (b^2+1)
after solving we do not get similar values.

B. f(x)=5^2x/3
f(a+b)=5^2(a+b)/3
f(a)*f(b)=5^2a/3* 5^2b/3
After solving this we get same numerator but different denominator.

C. f(x)=3x+2
f(a+b)=3(a+b)+2
f(a)*f(b)=(3a+2)*(3b+2)
after solving we do not get similar values.

D. f(x)=sq root of 2x
f(a+b)=sq root of 2(a+b)
f(a)*f(b)=sq root of 2a * sq root of 2b
after solving we do not get similar values.

E. f(x)=24^x
f(a+b)=24^(a+b)
f(a)*f(b)=24^a* 24^b
We get similar values on both sides.
Correct.

_________________
Pick yourself up, dust yourself off, and start again.

Success is the sum of all small efforts.

MAKE IT HAPPEN SVP  V
Joined: 20 Jul 2017
Posts: 1506
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

2
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)?

A. $$f(x) = x^2+1$$
$$f(a + b) = (a + b)^2 + 1 = a^2 + b^2 + 2ab + 1$$
$$f(a)*f(b) = (a^2+1)*(b^2+1) = (ab)^2 + a^2 + b^2 + 1$$ --> NO

B. $$f(x) = \frac{5^{2x}}{3}$$
$$f(a + b) = \frac{5^{2(a + b)}}{3} = \frac{5^{2a + 2b}}{3}$$
$$f(a)*f(b) = \frac{5^{2a}}{3}*\frac{5^{2b}}{3} = \frac{5^{2a + 2b}}{9}$$ --> NO

C. $$f(x) = 3x + 2$$
$$f(a + b) = 3(a + b) + 2 = 3a + 3b + 2$$
$$f(a)*f(b) = (3a + 2)*(3b + 2) = 9ab + 6a + 6b + 4$$ --> NO

D. $$f(x) = 2x$$
$$f(a + b) = 2(a + b) = 2a + 2b$$
$$f(a)*f(b) = 2a*2b = 4ab$$ --> NO

E. $$f(x) = 24^x$$
$$f(a + b) = 24^{a + b}$$
$$f(a)*f(b) = 24^a*24^b = 24^{a + b}$$ --> YES

IMO Option E

Pls Hit Kudos if you like the solution
Director  V
Joined: 30 Sep 2017
Posts: 910
GMAT 1: 720 Q49 V40 GPA: 3.8
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
Which of the following function follows the rule: f(a+b)=f(a)∗f(b)?

Let us try a=1, b=3, a+b= 1+3 = 4

A. f(x)=x^2+1
- f(a+b)=f(4)=17
- f(a)=f(1)=2, f(b)=f(3)=10, then f(a)∗f(b)= f(1)∗f(3) = 20
- the above function does NOT follow the rule: f(a+b)=f(a)∗f(b)

B. f(x)=5^(2x)/3
- f(a+b)=f(4)=(5^8)/3
- f(a)=f(1)=(5^2)/3, f(b)=f(3)=(5^6)/3, then f(a)∗f(b)= f(1)∗f(3) = (5^8)/9
- The above function does NOT follow the rule: f(a+b)=f(a)∗f(b)

C. f(x)=3x+2
- f(a+b)=f(4)=14
- f(a)=f(1)=5, f(b)=f(3)=11, then f(a)∗f(b)= f(1)∗f(3) = 55
- the above function does NOT follow the rule: f(a+b)=f(a)∗f(b)

D. f(x)=√(2x)
- f(a+b)=f(4)=√8
- f(a)=f(1)=√2, f(b)=f(3)=√6, then f(a)∗f(b)= f(1)∗f(3) = √12
- the above function does NOT follow the rule: f(a+b)=f(a)∗f(b)

E. f(x)=24^x
- f(a+b)=f(4)=24^4
- f(a)=f(1)=24^1, f(b)=f(3)=24^3, then f(a)∗f(b)= f(1)∗f(3) = 24^4
- the above function does follow the rule: f(a+b)=f(a)∗f(b)

Intern  S
Joined: 24 Mar 2018
Posts: 17
Location: India
Concentration: Operations, Strategy
GMAT 1: 620 Q48 V28
GMAT 2: 680 Q49 V34
GMAT 3: 710 Q49 V38
WE: Project Management (Energy and Utilities)
Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)  [#permalink]

### Show Tags

1
A. f(x)=$$x^2$$+1

f(a+b) = $$a^2$$+$$b^2$$+2ab+1
f(a).f(b) = $$a^2$$$$b^2$$+$$a^2$$+$$b^2$$+1

Not equal

B. f(x)=$$5^{2x}$$/3

f(a+b) = $$5^{2a+2b}$$/3
f(a).f(b) = $$5^{2a+2b}$$/9

Not equal

C. f(x)=3x+2

f(a+b) = 3a+3b+2
f(a).f(b) = (3a+2)(3b+2)

Not equal

D. $$f(x)=\sqrt{2x}$$

$$f(a+b) = \sqrt{2(a+b)}$$
$$f(a).f(b) = 2\sqrt{ab}$$

Not equal

E. f(x)=$$24^x$$

f(a+b) = $$24^{a+b}$$
f(a).f(b) = $$24^{a+b}$$

Equal

Hence, option E. Re: Which of the following function follows the rule: f(a + b) = f(a)*f(b)   [#permalink] 09 Jul 2019, 03:48

Go to page   Previous    1   2   [ 30 posts ]

# Which of the following function follows the rule: f(a + b) = f(a)*f(b)  