GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 17 Jan 2020, 08:27 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # (x^2 + x + 1)^x > 1 Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Senior Manager  Joined: 21 Dec 2009
Posts: 453
Concentration: Entrepreneurship, Finance
(x^2 + x + 1)^x > 1  [#permalink]

### Show Tags 00:00

Difficulty:

(N/A)

Question Stats: 20% (01:38) correct 80% (01:39) wrong based on 30 sessions

### HideShow timer Statistics

(x^2 + x + 1)^x > 1

1. (-infinity, 1)
2. (-1, infinity)
3. (0, infinity)
4. (1, infinity)
5. (0, infinity)
Math Expert V
Joined: 02 Sep 2009
Posts: 60460
Re: (x^2 + x + 1)^x > 1  [#permalink]

### Show Tags

gmatbull wrote:
(x^2 + x + 1)^x > 1

1. (-infinity, 1)
2. (-1, infinity)
3. (0, infinity)
4. (1, infinity)
5. (0, infinity)

Not a GMAT question.

First let's check when $$(x^2 + x + 1)^x=1$$:
When the power is zero: - $$x=0$$;
or
When the base is 1: $$x^2 + x + 1=1$$ --> $$x=0$$ or $$x=-1$$.

So 2 values, 3 ranges to check (checking the values of $$x^2 + x + 1$$ for different values of $$x$$):
Attachment: graph.php.png [ 9.55 KiB | Viewed 2577 times ]

$$x\leq{-1}$$ --> $$x^2 + x + 1\geq{1}$$ --> the number more than one in power less than -1 (remember power is $$x$$, which is $$\leq{-1}$$) will be less than one (check $$3^{(-2)}=\frac{1}{9}<1$$). So this range is not OK;

$$-1<x<0$$ --> $$\frac{3}{4}\leq{x^2 + x + 1}<1$$ --> the positive fraction less than one in negative power more than -1 will be more than 1 (check $$(\frac{3}{4})^{(-\frac{1}{2})}=\sqrt{{\frac{4}{3}}}>1$$). So this range is OK;

$$x>0$$ --> $$x^2 + x + 1>{1}$$ --> the number more than 1 in positive power will be more than 1. So this range is also OK.

So we got the ranges $$-1<x<0$$ and $$x>0$$ (remember when $$x=0$$ or $$x=-1$$, then $$(x^2 + x + 1)^x=1$$ so these values are not ok, we should exclude them).

No correct choice in answers, maybe it's meant to be 2, but the range (-1,infinity) includes 0 and it's not ok, also it's not clear whether -1 is included in the range or not.

_________________
Senior Manager  Joined: 21 Dec 2009
Posts: 453
Concentration: Entrepreneurship, Finance
Re: (x^2 + x + 1)^x > 1  [#permalink]

### Show Tags

I always appreciate your quick response to my (sometimes daunting) questions.
Many thanks....
Math Expert V
Joined: 02 Sep 2009
Posts: 60460
Re: (x^2 + x + 1)^x > 1  [#permalink]

### Show Tags

gmatbull wrote:
I always appreciate your quick response to my (sometimes daunting) questions.
Many thanks....

Can you pleas provide the source of this question (link maybe) and the OA.
_________________
Senior Manager  Joined: 21 Dec 2009
Posts: 453
Concentration: Entrepreneurship, Finance
Re: (x^2 + x + 1)^x > 1  [#permalink]

### Show Tags

Bunuel wrote:
gmatbull wrote:
I always appreciate your quick response to my (sometimes daunting) questions.
Many thanks....

Can you pleas provide the source of this question (link maybe) and the OA.

I can recall the OA given (B); hint: use of log. Source:can't recall, but I will check and revert.
Thanks Re: (x^2 + x + 1)^x > 1   [#permalink] 10 Jun 2010, 16:00
Display posts from previous: Sort by

# (x^2 + x + 1)^x > 1 Question banks Downloads My Bookmarks Reviews Important topics  