February 23, 2019 February 23, 2019 07:00 AM PST 09:00 AM PST Learn reading strategies that can help even nonvoracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT February 24, 2019 February 24, 2019 07:00 AM PST 09:00 AM PST Get personalized insights on how to achieve your Target Quant Score.
Author 
Message 
TAGS:

Hide Tags

eGMAT Representative
Joined: 04 Jan 2015
Posts: 2597

x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
26 May 2017, 04:21
Question Stats:
38% (02:50) correct 62% (02:26) wrong based on 301 sessions
HideShow timer Statistics



eGMAT Representative
Joined: 04 Jan 2015
Posts: 2597

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
26 May 2017, 04:43



Intern
Status: GMAT tutor
Joined: 20 Apr 2017
Posts: 20

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
26 May 2017, 04:46
EgmatQuantExpert wrote: Q. x + 3 = y 4, where x and y are nonzero integers. If x < 5 and y < 5, what is the maximum possible value of xy? Answer Choices Thanks, Saquib Quant Expert eGMATRegister for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the realtime guidance of our Experts Well, I don't 100% understand the question, but I'll take a stab at it. Since y<5, 1 is a possible value for y. Since 14=3, x would have to be 0 or 6 and that's not possible. So I'm going to try 1, which yields 14=5 so x could be 2. That will yield answer choice (D), and I don't see how you can reach zero since neither x nor y can be zero. I'm going with D.
_________________
Elias Latour Verbal Specialist @ ApexGMAT blog.apexgmat.com +1 (646) 7367622



eGMAT Representative
Joined: 04 Jan 2015
Posts: 2597

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
26 May 2017, 04:58
eliaslatour wrote: Well, I don't 100% understand the question, but I'll take a stab at it.
Since y<5, 1 is a possible value for y. Since 14=3, x would have to be 0 or 6 and that's not possible.
So I'm going to try 1, which yields 14=5 so x could be 2. That will yield answer choice (D), and I don't see how you can reach zero since neither x nor y can be zero. I'm going with D. Nice try eliaslatour. Though I won't comment whether is correct or not, as I want the others to also give it a shot. I just wanted to point out one error in your analysis. When we write y < 5 and we remove the modulus from y, the range of y is not y < 5, but 5 < y < 5.Apart from that, kudos to your observation that since x and y are nonzero integers, the value of xy can never be 0. Thanks, Saquib Quant Expert eGMATRegister for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the realtime guidance of our Experts
_________________
Register for free sessions Number Properties: Get 5 free video lessons, 50 practice questions  Algebra:Get 4 free video lessons, 40 practice questions Quant Workshop: Get 100 practice questions  Free Strategy Weession: Key strategy to score 760
Success Stories Q38 to Q50  Q35 to Q50  More Success Stories
Ace GMAT Articles and Question to reach Q51  Question of the week  Tips From V40+ Scoreres  V27 to V42: GMAT 770  Guide to Get into ISBMBA
Must Read Articles Number Properties – Even Odd  LCM GCD  Statistics1  Statistics2  Remainders1  Remainders2 Word Problems – Percentage 1  Percentage 2  Time and Work 1  Time and Work 2  Time, Speed and Distance 1  Time, Speed and Distance 2 Advanced Topics Permutation and Combination 1  Permutation and Combination 2  Permutation and Combination 3  Probability Geometry Triangles 1  Triangles 2  Triangles 3  Common Mistakes in Geometry Algebra Wavy line  Inequalities Practice Questions Number Properties 1  Number Properties 2  Algebra 1  Geometry  Prime Numbers  Absolute value equations  Sets
 '4 out of Top 5' Instructors on gmatclub  70 point improvement guarantee  www.egmat.com



Current Student
Joined: 18 Aug 2016
Posts: 623
Concentration: Strategy, Technology
GMAT 1: 630 Q47 V29 GMAT 2: 740 Q51 V38

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
26 May 2017, 05:25
EgmatQuantExpert wrote: Q. x + 3 = y 4, where x and y are nonzero integers. If x < 5 and y < 5, what is the maximum possible value of xy? Answer Choices Thanks, Saquib Quant Expert eGMATRegister for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the realtime guidance of our Experts x + 3 = y 4, where x and y are nonzero integers. If x < 5 and y < 5, what is the maximum possible value of xy 5<x<5, 5<y<5 We need to solve for values of x & y to keep XY to minimum using x + 3 = y 4 by value substitution x =2 and y=1 fits the criteria keeping XY to minimum hence option D
_________________
We must try to achieve the best within us
Thanks Luckisnoexcuse



Manager
Joined: 03 Jan 2016
Posts: 57
Location: India
WE: Engineering (Energy and Utilities)

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
28 May 2017, 04:45
I tried as mentioned below
Given :
5<x<5, 5<y<5 & x and y are non zero integers.
Therefore; x = {4,3,2,1,1,2,3,4} & y = {4,3,2,1,1,2,3,4}
x + 3 = y 4
Try plugging above values & above equation holds when 1. x=4 & y = 3 2. x=3 & y= 4 3. x=2 & y =1 4. x = 3 & y=2 5. x=4 & y = 3.
 xy will be max when x=2 & y = 1
Option D
This is how i arrived.
Thanx Narayana raju



Retired Moderator
Joined: 19 Mar 2014
Posts: 934
Location: India
Concentration: Finance, Entrepreneurship
GPA: 3.5

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
19 Jun 2017, 15:08
This is a good and tricky question. Given: lx+3l = ly4l  x & y are nonzero integers. lxl < 5 lyl < 5 Max of lxyl = ? As we have to find the max value, and the final max number will be negative as lxyl will be negative, we need to ensure that we get smallest value of negative possible which satisfies given equation. As per given information values of x and y can range as per below: 5 < x < 5 5 < y < 5 As we have to take least numbers, we will plug numbers from this range. Note we cannot take x & y as zero as per the given information, also it does not satisfy the given equation lx+3l = ly4l.Only values we can check for us 1 & 2 or 2 & 1 so maximum value we get is 2. Hence, Answer is D = 2
_________________
"Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent."
Best AWA Template: https://gmatclub.com/forum/howtoget60awamyguide64327.html#p470475



NonHuman User
Joined: 09 Sep 2013
Posts: 9887

Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
Show Tags
18 Oct 2018, 15:32
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: x + 3 = y 4, where x and y are nonzero integers. If x < 5 and
[#permalink]
18 Oct 2018, 15:32






