Sep 19 08:00 PM EDT  09:00 PM EDT Strategies and techniques for approaching featured GMAT topics. One hour of live, online instruction. Sep 19 10:00 PM PDT  11:00 PM PDT Join a FREE 1day Data Sufficiency & Critical Reasoning workshop and learn the best strategies to tackle the two trickiest question types in the GMAT! Sep 20 08:00 AM PDT  09:00 AM PDT Feeling perplexed by the paradox? Despairing the disparity? In this webinar, Hailey Cusimano explains how we can use strategy and structure to address premises that don't seem to align. Sept 20, Friday, 8am PST. Sep 19 12:00 PM PDT  10:00 PM PDT On Demand $79, For a score of 4951 (from current actual score of 40+) AllInOne Standard & 700+ Level Questions (150 questions) Sep 21 07:00 AM PDT  09:00 AM PDT Learn reading strategies that can help even nonvoracious reader to master GMAT RC Sep 22 08:00 PM PDT  09:00 PM PDT Exclusive offer! Get 400+ Practice Questions, 25 Video lessons and 6+ Webinars for FREE Sep 23 08:00 AM PDT  09:00 AM PDT Join a free 1hour webinar and learn how to create the ultimate study plan, and be accepted to the upcoming Round 2 deadlines. Save your spot today! Monday, September 23rd at 8 AM PST
Author 
Message 
TAGS:

Hide Tags

Director
Joined: 07 Aug 2011
Posts: 505
Concentration: International Business, Technology

x and y are positive integers such that x < y. If
[#permalink]
Show Tags
Updated on: 16 Feb 2015, 03:59
Question Stats:
60% (02:26) correct 40% (02:08) wrong based on 265 sessions
HideShow timer Statistics
x and y are positive integers such that x < y. If \(x\sqrt{y} = 6\sqrt{6}\), then xy could equal A. 36 B. 48 C. 54 D. 96 E. 108
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by Lucky2783 on 15 Feb 2015, 23:24.
Last edited by Bunuel on 16 Feb 2015, 03:59, edited 1 time in total.
Renamed the topic and edited the question.



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9643
Location: Pune, India

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
15 Feb 2015, 23:42
Lucky2783 wrote: x and y are positive integers such that x < y. If x sqrt(y) = 6 sqrt(6) , then xy could equal
36 48 54 96 108 First instinct, when you see \(x*\sqrt{y} = 6*\sqrt{6}\), you say that x = 6, y = 6 will satisfy this. But note that x < y. So y should be 6*Perfect square so that when you square root it, you are left with \(\sqrt{6}\). Try y = 6*4. Then x will be 3 so that you get 3*2 = 6 outside the square root. x*y = 3*24 = 72 (not in the options) Try y = 6*9. Then x will be 2 so that you get 2*3 = 6 outside the square root. x*y = 2*54 = 108 Answer (E)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15026
Location: United States (CA)

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
16 Feb 2015, 19:38
HI Lucky2783, This question is a mix of Exponent rules and Number Properties. We're told that X and Y are POSITIVE INTEGERS and that X < Y. We're also told that X(sqrt Y) = 6(sqrt 6). In most cases, we're asked to "simplify" a radical... For example: (sqrt 50) = 5(sqrt 2) Here, we have to go "in reverse" and put the 6 "back in" to the radical... 6(sqrt 6) = (sqrt 216) The question asks for a possible value of XY... We have (X)(X)(Y) = 216 as a reference Since the answers are ALL integers, we're looking for one, that when multiplied by another positive integer, gives us 216... Notice how 108 is exactly HALF of 216....? IF... (X)(Y) = 108 and X=2, then (X)(X)(Y) = 216. Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/



Intern
Joined: 15 Feb 2015
Posts: 13

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
16 Feb 2015, 19:50
X and Y are positive integer, which eliminates all negative situation.
x\sqrt{y} = 6\sqrt{6} > \sqrt{x*x*y} = \sqrt{6*6*6} 6*6*6 = 3*2*3*2*3*2 since x<y > x= 2, xy = 3*2*3*2*3 = 108



Math Expert
Joined: 02 Aug 2009
Posts: 7831

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
16 Feb 2015, 20:02
Lucky2783 wrote: x and y are positive integers such that x < y. If \(x\sqrt{y} = 6\sqrt{6}\), then xy could equal
A. 36 B. 48 C. 54 D. 96 E. 108 hi, since it is given \(x\sqrt{y} = 6\sqrt{6}\)... It is clear that \(\sqrt{y} = t\sqrt{6}\)... and t can be 2 or 3 or 6 as 6=2*3.. 1)let t=3 so x will be 2.. \(\sqrt{y} = 3\sqrt{6}\)... so y=\((3\sqrt{6})^2\) y=54 and xy=108.. ans E.. although we already have our ans, the two other possible values can be.. 2) the other possible value is t=2 and x=3 xy=3*\((2\sqrt{6})^2\)=3*24=72.. not a choice 3) the other possible value is t=6 and x=1 xy=1*\((6\sqrt{6})^2\)=1*216=216.. not a choice
_________________



Math Expert
Joined: 02 Aug 2009
Posts: 7831

x and y are positive integers such that x < y. If
[#permalink]
Show Tags
16 Feb 2015, 20:08
EMPOWERgmatRichC wrote: HI Lucky2783, This question is a mix of Exponent rules and Number Properties. We're told that X and Y are POSITIVE INTEGERS and that X < Y. We're also told that X(sqrt Y) = 6(sqrt 6). In most cases, we're asked to "simplify" a radical... For example: (sqrt 50) = 5(sqrt 2) Here, we have to go "in reverse" and put the 6 "back in" to the radical... 6(sqrt 6) = (sqrt 216) The question asks for a possible value of XY... We have (X)(X)(Y) = 216 as a reference Since the answers are ALL integers, we're looking for one, that when multiplied by another positive integer, gives us 216... Notice how 108 is exactly HALF of 216....?IF... (X)(Y) = 108 and X=2, then (X)(X)(Y) = 216. Final Answer: GMAT assassins aren't born, they're made, Rich hi, the ans is correct but there are other values in choices which when multiplied by integer would give you 216.. A. 36.... 36*6=216 C. 54....54*4=216 E. 108...108*2=216... so it is important to see which of these satisfies the equation x<y to get the correct answer...
_________________



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 15026
Location: United States (CA)

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
16 Feb 2015, 20:19
Hi chetan2u, As noted in my explanation, X and Y are both INTEGERS and X < Y; we need an answer that is in the format (X)(X)(Y) = 216 Of the 3 values that you listed, 2 of them do NOT fit that pattern. 36(6) = 216, but you would end up with (6)(6)(6) which is NOT a match (since X is NOT less than Y). 54(4) = 216, but you would end up with either (4)(4)(13.5) or (root54)(root54)(4), NEITHER of which is a match (since they both include NONinteger values). 108(2) = 216, which gives us (2)(2)(54), which IS the correct answer. GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/



Board of Directors
Joined: 17 Jul 2014
Posts: 2523
Location: United States (IL)
Concentration: Finance, Economics
GPA: 3.92
WE: General Management (Transportation)

x and y are positive integers such that x < y. If
[#permalink]
Show Tags
14 Dec 2015, 19:57
x is smaller than y \(x*sqrt(y) = 6*sqrt(6) sqrt[(x^2)*y] = sqrt(36*6) sqrt[(x^2)*y] = sqrt(216)\) ok, let's find prime factorization of 216 ok, 216 = 2 * 108 108 = 2 * 54 stop right here! we have two 2's, and 54. since x^2 * y = 216, it might be the case that x=2 and y = 54. 2*54 = 108, and it is in the answer choices. since it is a "could be" question, there is no need to check further.
_________________



NonHuman User
Joined: 09 Sep 2013
Posts: 12399

Re: x and y are positive integers such that x < y. If
[#permalink]
Show Tags
25 Nov 2018, 09:51
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: x and y are positive integers such that x < y. If
[#permalink]
25 Nov 2018, 09:51






