| Giver | Post | Date |
| onyxpropaganda | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 28-Oct-2023 |
| heidiym | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 24-Jun-2020 |
| Rebaz | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 21-Apr-2020 |
| smitasarkar5 | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 26-Sep-2019 |
| evolfish0315 | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 25-Sep-2019 |
| axezcole | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 03-Apr-2019 |
| naturalimproviser | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 05-Jun-2018 |
| nitesh6684 | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 06-Mar-2018 |
| kapilsingal27 | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 06-Oct-2016 |
| RohanKhera | If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y) | 05-Jul-2013 |