GMAT Club

Kudos owned by the user


MHIKER received 28 Kudos for post If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y).

GiverPostDate
Paras1If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)19-Nov-2024
Tanu12340987If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)20-Oct-2024
Abhineet11022000If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)24-May-2024
NDTTTIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)11-Feb-2024
BaThoLyIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)10-Jan-2024
dar24If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)09-Jan-2024
monilalaIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)03-Jan-2024
PuneetSuperstarIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)30-Aug-2023
sourovsIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)28-Aug-2023
avikk12If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)13-Aug-2023
ThonereturnsIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)01-Jun-2023
BigChungusIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)04-Apr-2023
p41060If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)10-Mar-2023
GinoRakoIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)31-Dec-2022
kdk21If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)22-Oct-2022
RishabhAwasthiIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)01-Sep-2022
qwerty9753765If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)30-Jul-2022
odonetgIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)28-Jul-2022
RastogiSarthak99If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)25-Jul-2022
mbaintern2025If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)18-Jun-2022
deltaveIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)26-Jan-2022
RebazIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)15-Apr-2020
vaaniIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)28-May-2019
houston1980If x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)25-Jul-2018
tschuralIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)10-Jul-2018
DrewChangIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)19-Dec-2017
blingblingIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)13-May-2015
TheDelhiDudeIf x > 1 and y > 1, is x < y ? (1) x^2/(xy + x) < 1 (2) xy/(y^2 - y)16-Sep-2014

Page 1 of 1