Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
A certain musical scale has has 13 notes, each having a [#permalink]
01 Jan 2004, 22:34
4
This post received KUDOS
4
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
95% (hard)
Question Stats:
47% (03:28) correct
53% (02:13) wrong based on 332 sessions
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
Re: OG PS #434-- musical scale [#permalink]
02 Jan 2004, 01:49
4
This post received KUDOS
1
This post was BOOKMARKED
stoolfi wrote:
On another thread, someone with a very good GMAT score said he couldn't really understand this question. It is posted for your perusal:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
let the constant be k
F1 = 440
F2 = 440k
F3 = 440 k * k = 440 * k^2
F13= 440 * k^12
we know F13 = 2 *F1 = 2 * 440 = 880
880/440 = k^12
k = twelfth root of 2
for F7...
F7 = 440 * k^6 ( as we wrote for F2 and F3)
F7 = 440 * (twelfth root of 2) ^ 6
A quick gut check on this problem is that every choice but A is way more than 880. Logically the 7th note must have a smaller value(the problem also states 'lower' frequency) than than the 13th. If crunched for time, good guess would be A.
Re: Took me a white to get it [#permalink]
23 Nov 2004, 17:54
toddmartin wrote:
It took me about 3.5 minutes to get the answer, even though I did get it right. I had to think about it for a few seconds then write down what I knew in order to see the solution. How difficult is this problem in relation to the ones I'm likely to see on the test if I'm aiming for 710-750?
Do not worry too much. I think this type of question does not appear unless you have 51 in quant. You can definitely break the 700 barrier without reaching 51 quant as long as you have a good verbal score also. _________________
I had no idea how to start it so I just
wrote down what I had and tried reorganizing
it.
440 * k = 2nd tone
440 * k * k = 3rd tone
.
.
440 * k ^6 = 7th tone.
At this point, I was wondering why none of
the answers had anything raised to the sixth
power, but after I wrote 440 (k^12) = 880
and started simplifying, I stumbled on the answer.
Re: OG PS #434-- musical scale [#permalink]
09 Nov 2011, 03:00
Praetorian wrote:
stoolfi wrote:
On another thread, someone with a very good GMAT score said he couldn't really understand this question. It is posted for your perusal:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
let the constant be k
F1 = 440
F2 = 440k
F3 = 440 k * k = 440 * k^2
F13= 440 * k^12
we know F13 = 2 *F1 = 2 * 440 = 880
880/440 = k^12
k = twelfth root of 2
for F7...
F7 = 440 * k^6 ( as we wrote for F2 and F3) F7 = 440 * (twelfth root of 2) ^ 6
F7 = 440 * sqrt (2)
Answer A
The question stem says that : the ratio of frequency to next higer frequency is fixed constant ...
Doesnt that mean F1/F2 = k
F2/F3 = k^2 and something like that .....???and not F2/F1 = k which is F2 = kF1???
Re: On another thread, someone with a very good GMAT score said [#permalink]
09 Nov 2011, 21:27
Siddhans,
It says the ratio of a frequency to the next higher frequency is a constant. f2/f1=f3/f2=f4/f3=.....=fixed number. This is an example of a geometric progression.
therefore, 440*k^12=880 , or k^12=2, or (k^6)^2=2 or k^6=root 2.
f7=440k^6= 440*root2.
The question stem says that : the ratio of frequency to next higer frequency is fixed constant ...
Doesnt that mean F1/F2 = k
F2/F3 = k^2 and something like that ..... ??? and not F2/F1 = k which is F2 = kF1???
Responding to a pm:
The statement, "the ratio of a frequency to the next higher frequency is a fixed constant." means that the ratio of two consecutive frequencies is always the same. It doesn't matter how you write it. You can say F1/F2 = F2/F3 = F3/F4 = ... = F12/F13 = k You can also say F2/F1 = F3/F2 = F4/F3 = ... = F13/F12 = k The two constants are different. Your k will be reciprocal of each other in the two cases. You can follow any approach. You will get the value of k accordingly.
Mind you, F2/F3 is also k, not k^2. The ratio remains constant. It is a geometric progression. The ratio between any two consecutive values is always the same. _________________
Re: OG PS #434-- musical scale [#permalink]
22 Feb 2013, 03:38
Praetorian wrote:
stoolfi wrote:
On another thread, someone with a very good GMAT score said he couldn't really understand this question. It is posted for your perusal:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
let the constant be k
F1 = 440
F2 = 440k
F3 = 440 k * k = 440 * k^2
F13= 440 * k^12
we know F13 = 2 *F1 = 2 * 440 = 880
880/440 = k^12
k = twelfth root of 2
for F7...
F7 = 440 * k^6 ( as we wrote for F2 and F3) F7 = 440 * (twelfth root of 2) ^ 6
Re: A certain musical scale has has 13 notes, each having a [#permalink]
22 Feb 2013, 04:48
Lowest frequency = 440 Highest frequency = 880 Lowest frequency (n) ^12 = Highest frequency N^12 = 2 ---------------- 1 7th note = Lowest Frequency x (n)^6 7th note = 440 x (2)^6/12 Hence the answer is A _________________
Re: OG PS #434-- musical scale [#permalink]
22 Feb 2013, 05:12
Expert's post
karmapatell wrote:
Praetorian wrote:
stoolfi wrote:
On another thread, someone with a very good GMAT score said he couldn't really understand this question. It is posted for your perusal:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
let the constant be k
F1 = 440
F2 = 440k
F3 = 440 k * k = 440 * k^2
F13= 440 * k^12
we know F13 = 2 *F1 = 2 * 440 = 880
880/440 = k^12
k = twelfth root of 2
for F7...
F7 = 440 * k^6 ( as we wrote for F2 and F3) F7 = 440 * (twelfth root of 2) ^ 6
F7 = 440 * sqrt (2)
Answer A
Why do you multiply and not add?
Like 1. 440 2. 440 + k and so on?
Because we are given that the ratio of a frequency to the next higher frequency is a fixed constant: F2/F1=k. _________________
Re: OG PS #434-- musical scale [#permalink]
22 Feb 2013, 09:29
karmapatell wrote:
Praetorian wrote:
stoolfi wrote:
On another thread, someone with a very good GMAT score said he couldn't really understand this question. It is posted for your perusal:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
let the constant be k
F1 = 440
F2 = 440k
F3 = 440 k * k = 440 * k^2
F13= 440 * k^12
we know F13 = 2 *F1 = 2 * 440 = 880
880/440 = k^12
k = twelfth root of 2
for F7...
F7 = 440 * k^6 ( as we wrote for F2 and F3) F7 = 440 * (twelfth root of 2) ^ 6
F7 = 440 * sqrt (2)
Answer A
Why do you multiply and not add?
Like 1. 440 2. 440 + k and so on?
"For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant"
The question says that the ratio of two consecutive frequencies is constant. Hence we multiply. _________________
Re: A certain musical scale has has 13 notes, each having a [#permalink]
22 Feb 2013, 12:59
Shoudln't "the ratio of a frequency to the next higher frequency is a fixed constant" be interpreted as f1/f2 = k instead of f2/f1=k? _________________
Alejandro LC MMT - EGADE Business School 2013 SM - HEC Paris 2014
Re: A certain musical scale has has 13 notes, each having a [#permalink]
12 Jul 2013, 21:40
Pushpinder wrote:
Lowest frequency = 440 Highest frequency = 880 Lowest frequency (n) ^12 = Highest frequency N^12 = 2 ---------------- 1 7th note = Lowest Frequency x (n)^6 7th note = 440 x (2)^6/12 Hence the answer is A
Pushpinder Ji I couldn't understand from here. Can u tell me please
Last edited by Bunuel on 12 Jul 2013, 23:28, edited 2 times in total.
Re: A certain musical scale has has 13 notes, each having a [#permalink]
12 Jul 2013, 23:38
1
This post received KUDOS
Expert's post
dasikasuneel wrote:
Pushpinder wrote:
A certain musical scale has has 13 notes, each having a different frequency, measured in cycles per second. In the scale, the notes are ordered by increasing frequency, and the highest frequency is twice the lowest. For each of the 12 lower frequencies, the ratio of a frequency to the next higher frequency is a fixed constant. If the lowest frequency is 440 cycles per second, then the frequency of the 7th note in the scale is how many cycles per second?
A. 440 * sqrt 2 B. 440 * sqrt (2^7) C. 440 * sqrt (2^12) D. 440 * the twelfth root of (2^7) E. 440 * the seventh root of (2^12)
Lowest frequency = 440 Highest frequency = 880 Lowest frequency (n) ^12 = Highest frequency N^12 = 2 ---------------- 1 7th note = Lowest Frequency x (n)^6 7th note = 440 x (2)^6/12 Hence the answer is A
Pushpinder Ji I couldn't understand from here. Can u tell me please
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Ninety-five percent of the Full-Time Class of 2015 received an offer by three months post-graduation, as reported today by Kellogg’s Career Management Center(CMC). Kellogg also saw an increase...
By Dean Nordhielm So you just got into business school. Congrats! At this point you still have months before you actually begin classes. That seems like a lot of...