Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 24 Aug 2016, 15:15

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Is |x|<1?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 08 Nov 2010
Posts: 417
WE 1: Business Development
Followers: 7

Kudos [?]: 88 [0], given: 161

Re: Inequalities, Is |X| < 1 ? [#permalink]

### Show Tags

14 Sep 2011, 08:08
mustu wrote:
scbguy wrote:
I see the answer as A, obviously I'm wrong but I don't see how x is 1/3 in statement 1

Posted from GMAT ToolKit

(1) |x + 1| = 2|x – 1|

This has 2 cases.. X>0 and X<0
If X>0 , then X+1 = 2(x-1)
If X<0 , then X+1 = -2(x-1)

Solving these equations we get X= 3 or X= 1/3. Since we have YES and NO situation => Not sufficient

(2) |x – 3| > 0

Solving this equation , we get x>3 or X<3, in either cases, X<> 3. So not sufficient.

(1) + (2) ==> X= 1/3 . Since X<> 3.

So the answer is (c).

Regards,
Mustu

Mustu - if im not wrong - u should check not for X><0 but X<>1,-1
_________________
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 6827
Location: Pune, India
Followers: 1917

Kudos [?]: 11919 [5] , given: 221

Re: Inequalities, Is |X| < 1 ? [#permalink]

### Show Tags

15 Sep 2011, 22:58
5
KUDOS
Expert's post
mustu wrote:
Is |x| < 1 ?

(1) |x + 1| = 2|x – 1|

(2) |x – 3| > 0

As I have said before, most mod questions are best tackled using a number line. You don't need to do many calculations then.
|x| means the distance from 0.
|x-3| means the distance from 3.
etc. For details of this approach, check out:

Let's go on to this question now.
Is |x| < 1 i.e. Is the distance of point x from 0 less than 1?

Statement 1: |x + 1| = 2|x – 1|
This means 'distance of x from -1 is twice the distance of x from 1'. Draw the number line now. There will be 2 points where the distance from -1 will be twice the distance from 1.
Attachment:

Ques6.jpg [ 5.12 KiB | Viewed 2646 times ]

For one of these points, distance from 0 is less than 1, for the other it is more than 1. So not sufficient.

Statement 2: |x – 3| > 0
This statement tells us that distance of x from 3 is more than 0 i.e. x does not lie at 3. It can lie anywhere else.
You can look at it in another way: Mods are always more than or equal to 0. All this statement tells us is that this mod is not equal to zero i.e. x is not equal to 3.
For some of these points, distance from 0 will be less than 1, for the others it will be more than 1. So not sufficient.

Using both statements together, statement 1 says that x is either 3 or a point between 0 and 1 (which I don't really need to calculate). Statement 2 tells us that x is not 3. So together, x must be a point between 0 and 1 and its distance from 0 must be less than 1. Sufficient.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Intern Joined: 17 Aug 2011 Posts: 5 Followers: 0 Kudos [?]: 0 [0], given: 3 Re: Inequalities, Is |X| < 1 ? [#permalink] ### Show Tags 15 Sep 2011, 23:23 mustu wrote: Is |x| < 1 ? (1) |x + 1| = 2|x – 1| (2) |x – 3| > 0 (1) There are 2 cases: 1/ x+1= 2(x-1) ---> x=3 2/ x+1= -2(x-1) ---> x=1/3 (2) X is not 3 ==> The answer is C Intern Joined: 20 Aug 2011 Posts: 3 Followers: 0 Kudos [?]: 0 [0], given: 3 Re: Inequalities, Is |X| < 1 ? [#permalink] ### Show Tags 23 Sep 2011, 09:10 Karishma, In this question, you were going to add a link to read up more about the approach. Seems like you forgot to add the link. Can you please send me the link. Thank you. etc. For details of this approach, check out: Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 6827 Location: Pune, India Followers: 1917 Kudos [?]: 11919 [0], given: 221 Re: Inequalities, Is |X| < 1 ? [#permalink] ### Show Tags 23 Sep 2011, 21:24 shikari wrote: Karishma, In this question, you were going to add a link to read up more about the approach. Seems like you forgot to add the link. Can you please send me the link. Thank you. etc. For details of this approach, check out: I apologize. Here you go: http://www.veritasprep.com/blog/2011/01 ... edore-did/ _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Intern
Status: Knerd
Joined: 15 Feb 2011
Posts: 32
GMAT 1: 700 Q45 V41
WE: Marketing (Consumer Products)
Followers: 1

Kudos [?]: 12 [0], given: 15

Re: Inequalities, Is |X| < 1 ? [#permalink]

### Show Tags

24 Sep 2011, 18:40
Am I doing this right:

Statement 1:

(1) |x + 1| = 2|x – 1|

(x+1)=2(x-1)
x+1=2x-2
3=x (NO)
&
(x+1)=-2(x-1)
x+1=-2x+2
3x=1
x=1/3 (YES)

Insufficient
B,C,orE

Statement 2

(2) |x – 3| > 0

(x-3)>0
x>3 (NO)

-(x-3)>0
-x+3>0
-x>-3
x<3 (MAYBE)

Not sufficient

C or E

(

Combined:

Statement 1: x=1/3,3
Statement 2: x <> 3

Since x CANNOT equal 3, x = 1/3

Since |1/3| < 1, both statements are sufficient to answer the prompt.

C

_________________

Knewton Knerd

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 6827
Location: Pune, India
Followers: 1917

Kudos [?]: 11919 [0], given: 221

Re: Inequalities, Is |X| < 1 ? [#permalink]

### Show Tags

25 Sep 2011, 23:13
This is fine as long as you know why you are doing this:

4LEX wrote:
Am I doing this right:

Statement 1:

(1) |x + 1| = 2|x – 1|

(x+1)=2(x-1) (When both the terms are positive, x > 1)
x+1=2x-2
3=x (NO) (Valid value for x since 3 >1)
&
(x+1)=-2(x-1) (When -1 < x < 1, (x+1) is positive but (x-1) is negative so you are put a negative sign here)
x+1=-2x+2
3x=1
x=1/3 (YES) (Valid value since -1 < 1/3 < 1)

There would be another case x < -1. In that case both the terms will be negative.
-(x+1)=-2(x-1)
giving x = 3 (Not a valid value since 3 is not less than -1)
I am assuming that you saw the two negatives will get canceled out and give x = 3 which will not be valid so you skipped this step. In some questions, you could get a valid value here.
So you have only 2 values for x (3 and 1/3).

Insufficient
B,C,orE

Statement 2

(2) |x – 3| > 0

(x-3)>0
x>3 (NO)

-(x-3)>0
-x+3>0
-x>-3
x<3 (MAYBE)

Not sufficient

C or E

Combined:

Statement 1: x=1/3,3
Statement 2: x <> 3

Since x CANNOT equal 3, x = 1/3

Since |1/3| < 1, both statements are sufficient to answer the prompt.

C

_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews VP Status: Been a long time guys... Joined: 03 Feb 2011 Posts: 1420 Location: United States (NY) Concentration: Finance, Marketing GPA: 3.75 Followers: 170 Kudos [?]: 1174 [0], given: 62 Re: Is |x| < 1 ? [#permalink] ### Show Tags 31 Dec 2012, 20:57 monir6000 wrote: Is |x| < 1 ? (1) |x + 1| = 2|x – 1| (2) |x – 3| > 0 Answer is C. From statement 1, we are able to get two values of x; they are $$x=3$$ and $$x=1/3$$. Two values of x, hence insufficient. From statement 2, all we know is that the distance from x is more than 0 or it indirectly implies that x is not 0. Not enough information. Hence insufficient. On combining these two statements, we come to know that x cannot be 3 and x=1/3. Since $$1/3$$ < 1, hence $$|x|<1$$. +1C. Please do add the OA while posting the questions. _________________ Intern Joined: 08 Dec 2012 Posts: 2 Followers: 0 Kudos [?]: 1 [0], given: 0 Re: Is |x|<1? [#permalink] ### Show Tags 07 Feb 2013, 13:22 This is my approach: Is |x|<1? 1st start from statement 2, cause it is easier, |x – 3| > 0 just tell us x is note equal to 3, so it is insufficient to solve the target question 2nd for statement 2: |x + 1| = 2|x – 1| we have to separate the condition to x<-1, -1<x<1, x>1 that is , |x|<1 and |x|> 1 to do further thinking 1) when |x|<1, we could know we will get the solution in this range after solving equation, thus get the answer "YES" for question |x|<1 2) when |x|>1, we could know we will get the same answer in x<-1 and x>1 condition, and we could assure the answer is "NO" for target question so based on above, statement 2 is insufficient to solve the target question we only left option C and E now. To test whether statements together will help to solve target question, we could use the denied solution x=3 in statement 2 to statement 1 to see whether it is one of the two solutions of equation. If it is one of the solutions, then statement 2 will help to reduce the two solutions to one, thus, support the target question. We could feel free to choose option C If it is not one of the solution, then statement 2 will not help to reduce the number of solutions, thus, we could feel free to choose option E. Let us test now. LS 3+1|=4 RS:2*|3-1|=4, we could know x=3 is one of the two answers. Thus we could choose C Intern Joined: 26 Feb 2014 Posts: 3 Followers: 0 Kudos [?]: 2 [0], given: 0 Inequality - Data Sufficiency Problem 3 [#permalink] ### Show Tags 26 Feb 2014, 09:58 Is |x| < 1 ? 1. |x+1| = 2|x-1| 2. |x-3| > 0 How to approach and solve this kind of problem .. Magoosh GMAT Instructor Joined: 28 Dec 2011 Posts: 3305 Followers: 1122 Kudos [?]: 4923 [0], given: 54 Re: Inequality - Data Sufficiency Problem 3 [#permalink] ### Show Tags 26 Feb 2014, 15:02 faceharshit wrote: Is |x| < 1 ? 1. |x+1| = 2|x-1| 2. |x-3| > 0 How to approach and solve this kind of problem .. Dear faceharshit, I'm happy to respond. I dare say, this problem is a little bit harder than what the GMAT will ask of you. Statement #1: |x+1| = 2|x-1| If we are given |P| = |Q|, this means: P = Q OR P = -Q. Notice that the word "or" is not a piece of garnish there: rather, it is an essential piece of mathematical equipment. |x + 1| = 2|x - 1| Case I (x + 1) = 2(x - 1) x + 1 = 2x - 2 x = 3 Case II (x + 1) = -2(x - 1) x + 1 = -2x + 2 3x = 1 x = 1/3 This, from statement #1, we have x = 3 or x = 1/3. With this, we do not have sufficient information to answer the prompt question. This statement, by itself, is insufficient. Statement #2: |x-3| > 0 Forget about everything we did in statement #1. Here, x could equal 10, in which case |x| is not less than 1, or x could equal 0, in which cases |x| is less than 1. We can pick different values that satisfy |x-3| > 0, x = 10 and x = 0, that give two different answers to the prompt question. Therefore, we do not have sufficient information to answer the prompt question. This statement, by itself, is insufficient. Combined: #1 gives us x = 3 or x = 1/3 The value x = 3 does not satisfy the second statement, so we reject that value. The value x = 1/3 is only value that satisfies both statements, and with this, |x| < 1. Combined, the statements are sufficient. Answer = (C) Does all this make sense? Mike _________________ Mike McGarry Magoosh Test Prep Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 6827 Location: Pune, India Followers: 1917 Kudos [?]: 11919 [0], given: 221 Re: Inequality - Data Sufficiency Problem 3 [#permalink] ### Show Tags 26 Feb 2014, 21:50 faceharshit wrote: Is |x| < 1 ? 1. |x+1| = 2|x-1| 2. |x-3| > 0 How to approach and solve this kind of problem .. Use the number line to solve it quickly. Check: http://www.veritasprep.com/blog/2011/01 ... edore-did/ 'Is |x| < 1' implies 'Is distance of x from 0 less than 1?' i.e. does x lie within -1 and 1 (excluding the points -1 and 1)? 1. |x+1| = 2|x-1| This tells you that distance of x from -1 is twice the distance of x from 1. There are two values of x for which this is possible: Attachment: Ques3.jpg [ 8.77 KiB | Viewed 658 times ] The red line is twice the length of the blue line in both the cases. For the first case, x lies somewhere between 0 and 1 but for the second case, x lies at 3. Hence we can't answer whether x will lie between -1 and 1 from this statement alone. 2. |x-3| > 0 This tells us that x is a point whose distance from 3 is more than 0. That means it is not at 3 but on its left or right. This statement alone doesn't tell us whether x lies between -1 and 1. Both statements together: Stmnt 1 tells us that x lies between -1 and 1 or at 3. Stmnt 2 tells us that x doesn't lie at 3. Then there is only one option left: x must lie between -1 and 1. Answer (C) _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Math Expert
Joined: 02 Sep 2009
Posts: 34420
Followers: 6251

Kudos [?]: 79410 [0], given: 10016

Re: Inequality - Data Sufficiency Problem 3 [#permalink]

### Show Tags

27 Feb 2014, 06:13
faceharshit wrote:
Is |x| < 1 ?
1. |x+1| = 2|x-1| 2. |x-3| > 0

How to approach and solve this kind of problem ..

Merging similar topics.

P.S. Please read carefully and follow: rules-for-posting-please-read-this-before-posting-133935.html Pay attention to the rules 1, 3 and 7. Thank you.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 11040
Followers: 509

Kudos [?]: 133 [0], given: 0

Re: Is |x|<1? [#permalink]

### Show Tags

23 Mar 2015, 09:25
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 11040
Followers: 509

Kudos [?]: 133 [0], given: 0

Re: Is |x|<1? [#permalink]

### Show Tags

18 Jun 2016, 02:29
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: Is |x|<1?   [#permalink] 18 Jun 2016, 02:29

Go to page   Previous    1   2   [ 35 posts ]

Similar topics Replies Last post
Similar
Topics:
11 Is |x-1| < 1? 19 12 Feb 2012, 21:49
11 Is |x| < 1 22 05 Oct 2011, 06:00
Is x+y<1? 6 21 Sep 2010, 22:57
12 Is |x| < 1? 8 12 Feb 2010, 04:20
16 Is |x|<1 ? 11 31 Dec 2009, 08:24
Display posts from previous: Sort by

# Is |x|<1?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.