Find all School-related info fast with the new School-Specific MBA Forum

It is currently 27 Jul 2014, 20:47

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

M09#12

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 13 Dec 2009
Posts: 264
Followers: 10

Kudos [?]: 99 [1] , given: 13

GMAT Tests User Reviews Badge
M09#12 [#permalink] New post 28 May 2010, 08:54
1
This post received
KUDOS
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

64% (02:22) correct 36% (01:13) wrong based on 363 sessions
If the power of an engine grows by 10% when the number of its cylinders is increased by one, which of the following is closest to the ratio of the power of a 9-cylinder engine to that of a 12-cylinder engine?

(A) 0.69
(B) 0.71
(C) 0.72
(D) 0.75
(E) 0.78

OA
[Reveal] Spoiler:
D

Source: GMAT Club Tests - hardest GMAT questions

OE
[Reveal] Spoiler:
Let X denote the power of the 9-cylinder engine and Y the power of the 12-cylinder engine. It follows from the stem that:
Y = 1.1^3X = 1.21*1.1*X = 1.331X ~= 1\frac{1}{3}X
The required ratio is \frac{X}{Y} = 1/1\frac{1}{3} = \frac{3}{4} = 0.75


My approach - Could someone validate if this approach is right??
[Reveal] Spoiler:
Let P be the power of the engine.
1 cylinder results in a 10% increase in power.
Therefore 0.1P = 1 Cylinder.
Power of a 9 cylinder engine = 9 * 0.1P = 0.9P
Power of a 12 cylinder engine = 12 * 0.1P = 1.2P
Ratio of power of 9 cylinder engine to 12 cylinder engine= \frac{0.9P}{1.2P} = \frac{3}{4} = 0.75
[Reveal] Spoiler: OA

_________________

My debrief: done-and-dusted-730-q49-v40


Last edited by sidhu4u on 28 May 2010, 22:33, edited 2 times in total.
Kaplan Promo CodeKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Manager
Manager
User avatar
Joined: 15 Apr 2010
Posts: 196
Followers: 3

Kudos [?]: 14 [0], given: 29

GMAT Tests User
Re: M09#12 [#permalink] New post 28 May 2010, 11:03
hope thats a good way.... Can you post the OE? I got bogged down by trying to compound the 10%everytime. Is that not the right way to do this?

(P+0.1P)0.1P .... and so on?
1 KUDOS received
Intern
Intern
avatar
Joined: 17 Aug 2009
Posts: 36
Location: India
Concentration: General Management, Finance
Schools: Babson (A), Smith (D)
GMAT 1: 580 Q49 V21
GMAT 2: 650 Q49 V29
GPA: 3.85
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 8 [1] , given: 8

Re: M09#12 [#permalink] New post 28 May 2010, 22:00
1
This post received
KUDOS
(1*1*1)/1.1*1.1*1.1 ~ 0.75

Answer D

Does this help?
Intern
Intern
avatar
Joined: 28 May 2010
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: M09#12 [#permalink] New post 08 Jun 2010, 03:18
I think its D.

No. of Engines 9 10 11 12
Power(goes up by 10%) 10 11 12.1 13.31

10/13.31 = 0.75
1 KUDOS received
Intern
Intern
avatar
Joined: 24 May 2010
Posts: 4
Followers: 0

Kudos [?]: 3 [1] , given: 2

Re: M09#12 [#permalink] New post 08 Jun 2010, 05:13
1
This post received
KUDOS
I solved it using the pricipal of compound intrest
A= P(1+r)^n
Assuming principal P is 1 i.e 1st year
r= rate of intrest
n= no. of years
1) for 9 years
A1=1(1+ .10)^8
2) for 12 years
A2=1(1+ .10)^12

hence ratio is A1/A2 = 1/1.10^3 ~ 1/1.33 = 100/133 = .75
Intern
Intern
User avatar
Joined: 25 Feb 2009
Posts: 13
Location: Nairobi
Schools: HBS
Followers: 3

Kudos [?]: 12 [0], given: 0

Re: M09#12 [#permalink] New post 08 Jun 2010, 07:36
If the power of an engine grows by 10% when the number of its cylinders is increased by one, which of the following is closest to the ratio of the power of a 9-cylinder engine to that of a 12-cylinder engine?

(A) 0.69
(B) 0.71
(C) 0.72
(D) 0.75
(E) 0.78

I agree with everyone who chose D

A good question to pick numbers:

Let the power of 9-cylinder engine be 1,
Increases from 9 - 12 cylinder has 3 steps of power increment
Therefore, the ratio = 1/ (110/100*110/100*110/100) =
100*100*100/110*110*110 =
1000/1331=0.75
1 KUDOS received
Joined: 31 Dec 1969
Location: United States
Concentration: Marketing, Other
GMAT 1: 710 Q49 V38
GMAT 2: 660 Q V
GPA: 3.64
WE: Accounting (Accounting)
Followers: 0

Kudos [?]: 51 [1] , given: 75196

Re: M09#12 [#permalink] New post 08 Jun 2010, 09:51
1
This post received
KUDOS
This is a geometric sequence.

the nth term in a geometric sequence is a*( r^(n-1) )

the ratio of 9th to 11th is ar^8/ar^11 = 1/r*r*r = 1/1.331 = 0.75
2 KUDOS received
Director
Director
avatar
Joined: 21 Dec 2009
Posts: 588
Concentration: Entrepreneurship, Finance
Followers: 15

Kudos [?]: 237 [2] , given: 20

GMAT Tests User
Re: M09#12 [#permalink] New post 10 Jun 2010, 08:04
2
This post received
KUDOS
since power increase by 10% => common ratio = 1.1
let the power of a 9-engine = p (1st term of a GP series)
Power of a 12(4th term) engine = p(1.1)^3
9- engine / 12-engine = p/(p)1.1^3 = 1/1.331
0.751
The closest is D (0.75)
_________________

KUDOS me if you feel my contribution has helped you.

Intern
Intern
avatar
Joined: 17 May 2010
Posts: 19
Followers: 0

Kudos [?]: 4 [0], given: 0

Re: M09#12 [#permalink] New post 15 Jun 2010, 07:41
D too.

by choosing the power of 9 cylinders is 1.
Manager
Manager
avatar
Joined: 12 Jul 2010
Posts: 67
Followers: 1

Kudos [?]: 2 [0], given: 3

Re: M09#12 [#permalink] New post 13 Aug 2010, 02:30
Its C.

The ratio is 1: 1.1 to the power 3. Close to 0.75!
Current Student
User avatar
Joined: 29 Apr 2010
Posts: 228
Schools: Sloan R1, McCombs R1, Ross R1 (w/int), Haas R2, Kellogg R2
WE 1: Product Engineering/Manufacturing
Followers: 3

Kudos [?]: 32 [0], given: 26

GMAT Tests User
Re: M09#12 [#permalink] New post 19 Aug 2010, 07:16
sidhu4u wrote:

My approach - Could someone validate if this approach is right??
[Reveal] Spoiler:
Let P be the power of the engine.
1 cylinder results in a 10% increase in power.
Therefore 0.1P = 1 Cylinder.
Power of a 9 cylinder engine = 9 * 0.1P = 0.9P
Power of a 12 cylinder engine = 12 * 0.1P = 1.2P
Ratio of power of 9 cylinder engine to 12 cylinder engine= \frac{0.9P}{1.2P} = \frac{3}{4} = 0.75


I think you got lucky in this case. You should have to do it exponentially.

I took a long approach, assuming the power of a 9 cylinder engine is 100:

10 cylinder power: 110
11: 121
12: 133

100/133 was not something I could compute quickly, so I picked .71 first because it was the easiest calculation, then went to .75 and found that it was correct.
1 KUDOS received
Joined: 31 Dec 1969
Location: United States
Concentration: Marketing, Other
GMAT 1: 710 Q49 V38
GMAT 2: 660 Q V
GPA: 3.64
WE: Accounting (Accounting)
Followers: 0

Kudos [?]: 51 [1] , given: 75196

Re: M09#12 [#permalink] New post 18 Dec 2010, 01:49
1
This post received
KUDOS
I think the simplest way is: an increase in 10% simply means a1.1 increase so
9*1.1=9.9
12*1.1=13.2
Ratio of the two is 9.9/13.2=0.75
Manager
Manager
User avatar
Status: On...
Joined: 16 Jan 2011
Posts: 189
Followers: 3

Kudos [?]: 32 [0], given: 62

GMAT Tests User
Re: M09#12 [#permalink] New post 11 Jun 2011, 15:03
I used the compound formaule approach as the power compounds....

so....y=x(1+10/100)^3=x(11/10)^3
The question is what is x/y ?
or what is (10/11)^3...

I agree that the ANS. is (D) if you actually solve putting the values...

But what I did was
[(11-1)/11]^3=(1-.09)^3=(.91)^3
Now I approx. this to (.9)^3 giving .729
So I chose (C) that was wrong :(

Do these types of Questions where you have to actually solve the values rather than apply logic really come in GMAT ?
_________________

Labor cost for typing this post >= Labor cost for pushing the Kudos Button
kudos-what-are-they-and-why-we-have-them-94812.html

Intern
Intern
avatar
Joined: 24 May 2010
Posts: 46
Followers: 0

Kudos [?]: 5 [0], given: 6

GMAT Tests User
Re: M09#12 [#permalink] New post 11 Jun 2011, 22:07
My approach was,

We are asked to find the ration of power with 9 cylinder to that of 12 cylinder engine.
Given: addition of 1 cylinder will increase the power by 10%. Say if power of engine is 1, then adding 1 cylinder to it makes the power as 1.1

=P(9 Cylinders)/ P(12 Cylinders)
=P(9 C)/ (P(9 C) and P(3 C))
= 1/ P(3 C)
= 1/ (1.1* 1.1 * 1.1) = 1/ 1.33 = 1/ 1.3 (approx)
= .75 (approx) Simplistic, calculation will give nearest answer (100/13 is 7.6)

Ans: D
Manager
Manager
User avatar
Joined: 28 Feb 2011
Posts: 91
Followers: 0

Kudos [?]: 31 [0], given: 2

Re: M09#12 [#permalink] New post 12 Jun 2011, 01:16
+1 for D..
Using the approx technique..1/13 is 0.77 and 1/14 is 0.71..
Now we have 1/13.33.. it should be more towards 0.75 rather than 0.72...
_________________

Fight till you succeed like a gladiator..or doom your life which can be invincible

Intern
Intern
avatar
Joined: 10 May 2011
Posts: 7
Followers: 1

Kudos [?]: 2 [0], given: 13

Re: M09#12 [#permalink] New post 12 Jun 2011, 13:34
since ratio of power for 9 and 12 cylinders is asked we dont have to really calculate the p9 and p12 as we know p/c = p9/c9 = p12/c12
since we know c9=9 cylinders and c12=12 cylinders
so after substituting the value p9/p12=9/12=0.75
so answer is D
Intern
Intern
avatar
Joined: 03 May 2011
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: M09#12 [#permalink] New post 13 Jun 2011, 01:51
I think the easiest way to solve this problem is,

9*10% = 0.9
12*10%= 1.2

9+1.1 = 9.9
12+1.2=13.2

Ratio of 9.9/13.2 = 0.75.

Please let me know if this is correct.

Thanks
Manager
Manager
User avatar
Joined: 28 Feb 2011
Posts: 91
Followers: 0

Kudos [?]: 31 [0], given: 2

Re: M09#12 [#permalink] New post 13 Jun 2011, 08:12
sameershintrein wrote:
since ratio of power for 9 and 12 cylinders is asked we dont have to really calculate the p9 and p12 as we know p/c = p9/c9 = p12/c12
since we know c9=9 cylinders and c12=12 cylinders
so after substituting the value p9/p12=9/12=0.75
so answer is D


By this logic, p9/p13 would be 0.69 (9/13)..and p9/p15 would be 0.6 (9/15)

Whereas adding 10% to each increase in cylinder gives 0.68(1/1.46) in case of 13 cylinders and 0.56 (1/1.77) in case of 15 cylinders..

You can see the respective difference between values computed through the two methods is increasing...

The method that you used fitted well because of the values involved but it doesnt take into account the 10% increase..

Please let me know if I'm missing something here..
_________________

Fight till you succeed like a gladiator..or doom your life which can be invincible

Intern
Intern
avatar
Joined: 01 Jun 2011
Posts: 7
Followers: 0

Kudos [?]: 4 [0], given: 3

Re: M09#12 [#permalink] New post 14 Jun 2011, 18:35
use 1 for 9 cyl
9= 1
10= 1.1 (10% more=.1)
11= 1.1* 1.1(10% of 1.1 not 1) = 1.21
12 = 1.21 * 1.1 = 1.33

9cly/12cly = (1) / (4/3)<--converted to closest fraction = (1) * (3/4) = 9/12 = 3/4 or .75 so D
Intern
Intern
avatar
Joined: 11 Jan 2010
Posts: 38
Followers: 1

Kudos [?]: 50 [0], given: 6

Re: M09#12 [#permalink] New post 14 Jun 2012, 05:24
Say 9C = 100

Then 12C = 100 * (1.1)^3

So the Ratio = 100 / 100 (1.1)^3 = (10/11)^3
=> Ratio = (0.909)^3
Using approximation: 0.9 * 0.9 * 0.9 = 0.81 * 0.9 = 0.729
So, the ratio must be greater than 0.729 ; 0.75 is the likely value. D is a good choice of answer.
Re: M09#12   [#permalink] 14 Jun 2012, 05:24
Display posts from previous: Sort by

M09#12

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 29 posts ] 

Moderators: Bunuel, WoundedTiger



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.