Last visit was: 19 Nov 2025, 18:40 It is currently 19 Nov 2025, 18:40
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
655-705 Level|   Probability|                              
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,374
 [805]
49
Kudos
Add Kudos
752
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,374
 [221]
44
Kudos
Add Kudos
175
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,374
 [196]
27
Kudos
Add Kudos
167
Bookmarks
Bookmark this Post
User avatar
dheeraj24
Joined: 01 Sep 2013
Last visit: 26 Jul 2015
Posts: 85
Own Kudos:
347
 [175]
Given Kudos: 74
Status:suffer now and live forever as a champion!!!
Location: India
Dheeraj: Madaraboina
GPA: 3.5
WE:Information Technology (Computer Software)
Posts: 85
Kudos: 347
 [175]
124
Kudos
Add Kudos
51
Bookmarks
Bookmark this Post
no of ways of getting P(GGBB) is 4!/2!*2!;
Total no of ways is 2^n =2^4 =16;

6/16 = 3/8;
We can consider this question to a coin that is flipped for 4 times . what is the probability of getting exactly two heads .

P(all out comes) = 1/2 *1/2 *1/2 *1/2 =1/16;

P(favorable outcomes) = 4!/(2! * 2!) = 6/16 =3/8;

(OR)

Second Approach

GBGB
GGBB
BBGG
BGBG
GBBG
BGGB

6 possible ways .
total no of ways is
Baby can be a boy or a girl.
For each baby the probability is 1/2 ;for 4 babies it's 1/16;
6/16 = 3/8;
 
User avatar
NoHalfMeasures
User avatar
Retired Moderator
Joined: 29 Oct 2013
Last visit: 11 Jul 2023
Posts: 220
Own Kudos:
2,480
 [68]
Given Kudos: 204
Concentration: Finance
GPA: 3.7
WE:Corporate Finance (Retail Banking)
Posts: 220
Kudos: 2,480
 [68]
40
Kudos
Add Kudos
28
Bookmarks
Bookmark this Post
By fundamental counting principle,
Total No of out comes: 2^4 = 16

Total Desired outcomes: No of ways to arrange BBGG by MISSISSIPPI rule= 4!/(2!*2!) = 6

Probability is 6/16 = 3/8
User avatar
masoomdon
Joined: 07 Feb 2015
Last visit: 29 Jun 2015
Posts: 35
Own Kudos:
82
 [34]
Given Kudos: 76
Posts: 35
Kudos: 82
 [34]
22
Kudos
Add Kudos
12
Bookmarks
Bookmark this Post
So here we have four positions and there are two options to fill each position
so total number of cases=2x2x2x2=16
now we need 2boys and 2 girls OR we can say that we simply need 2 boys because if its not a boy it has to be a girl
favourable cases=4C2=6
probability=6/16=3/8

(A)
User avatar
SVaidyaraman
Joined: 17 Dec 2012
Last visit: 11 Jul 2025
Posts: 576
Own Kudos:
1,795
 [22]
Given Kudos: 20
Location: India
Expert
Expert reply
Posts: 576
Kudos: 1,795
 [22]
15
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
Bunuel
The Official Guide For GMAT® Quantitative Review, 2ND Edition

A couple decides to have 4 children. If they succeed in having 4 children and each child is equally likely to be a boy or a girl, what is the probability that they will have exactly 2 girls and 2 boys?

(A) 3/8
(B) 1/4
(C) 3/16
(D) 1/8
(E) 1/16


Let us handle a single case. First boy, second boy, third girl, fourth girl. The probability of this case is 1/2*1/2*1/2*1/2 = 1/16
Two boys or two girls can be born among 4 children in 4C2 ways= 6 ways
So the required probability is: total number of ways * probability of one such way= 6* (1/16)=3/8
General Discussion
avatar
LaxAvenger
Joined: 18 Aug 2014
Last visit: 10 Nov 2017
Posts: 91
Own Kudos:
154
 [13]
Given Kudos: 36
Location: Hong Kong
Schools: Mannheim
Schools: Mannheim
Posts: 91
Kudos: 154
 [13]
11
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
1/2 is the chance of boy or girl

1/2 * 1/2 * 1/2 * 1/2 = 1/16 (4 children, boy or girl)

Possible ways of 2 boys, 2 girls:

GGBB
BBGG
GBGB
BGBG
BGGB
GBBG

= 6 ways

we need "OR" --> 1/16 OR 1/16 ....
1/16 + 1/16 + 1/16 ....... +1/16 = 6/16 = 3/8

Answer A
User avatar
donkadsw
Joined: 23 Sep 2011
Last visit: 02 Apr 2021
Posts: 46
Own Kudos:
51
 [11]
Given Kudos: 24
Location: Singapore
Concentration: Finance, Entrepreneurship
GMAT 1: 740 Q50 V40
GPA: 3.44
WE:Information Technology (Finance: Investment Banking)
GMAT 1: 740 Q50 V40
Posts: 46
Kudos: 51
 [11]
10
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Why are we ordering here? I mean, I would think BBGG to be the same as BGBG - since the question asks about exactly 2 girls and 2 boys, irrespective of any order of delivery.
We have 5 possibilities: 4 boys, 3 boys and 1 girl, 2 boys and 2 girls, 1 boy and 3 girls, and finally all 4 girls.
So shouldn't the probability be 1/5? too simplistic - I know. but where am I wrong?
User avatar
sd.1223
Joined: 01 Jun 2013
Last visit: 11 Aug 2018
Posts: 6
Own Kudos:
21
 [10]
Given Kudos: 12
Posts: 6
Kudos: 21
 [10]
3
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
Binomial Probability
The probability of achieving exactly k successes in n trials is shown below.
Formula: P(Probability of K successes in n trials) = nCk p^k q^n-k

n = number of trials
k = number of successes
n – k = number of failures
p = probability of success in one trial
q = 1 – p = probability of failure in one trial

According to our question

n(4 children) = 4
k( we want exactly 2 girls) = 2
n – k = 2
p (probability of getting a girl in one trial) = 1/2
q = 1 – p = 1/2

4C2 * 1/2^2 * 1/2^2 =3/8

Binomial can also be used for problem like coins.

Binomial is used when following conditions are satisfied.

Fixed number of trials
Independent trials
Two different classifications
Probability of success stays the same for all trials
User avatar
Dondarrion
Joined: 23 Feb 2015
Last visit: 09 Feb 2020
Posts: 160
Own Kudos:
Given Kudos: 5
Posts: 160
Kudos: 111
Kudos
Add Kudos
Bookmarks
Bookmark this Post
donkadsw
Why are we ordering here? I mean, I would think BBGG to be the same as BGBG - since the question asks about exactly 2 girls and 2 boys, irrespective of any order of delivery.
We have 5 possibilities: 4 boys, 3 boys and 1 girl, 2 boys and 2 girls, 1 boy and 3 girls, and finally all 4 girls.
So shouldn't the probability be 1/5? too simplistic - I know. but where am I wrong?

Bump seeking an answer to the question above:

I got 1/5 as well.

BBBB
BBBG
BBGG
GGGB
GGGG

1/5 outcomes

The question doesn't say anything about the order. How do we know when order matters?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [19]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [19]
15
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Dondarrion
donkadsw
Why are we ordering here? I mean, I would think BBGG to be the same as BGBG - since the question asks about exactly 2 girls and 2 boys, irrespective of any order of delivery.
We have 5 possibilities: 4 boys, 3 boys and 1 girl, 2 boys and 2 girls, 1 boy and 3 girls, and finally all 4 girls.
So shouldn't the probability be 1/5? too simplistic - I know. but where am I wrong?

Bump seeking an answer to the question above:

I got 1/5 as well.

BBBB
BBBG
BBGG
GGGB
GGGG

1/5 outcomes

The question doesn't say anything about the order. How do we know when order matters?

In this case we are saying that the probability of BGGG is the same as the probability of BBGG. But that is not so.

You can have 1 boy and 3 girls in 4 ways: BGGG, GBGG, GGBG, GGGB
But you can have 2 boys and 2 girls in 6 ways: BBGG, BGGB, GGBB, BGBG, GBGB, GBBG

So the probability depends on the number of ways in which you can get 2 boys and 2 girls.

Think of it this way: if you throw two dice, is the probability of getting a sum of 2 same as the probability of getting a sum of 8? No.
For sum fo 2, you must get 1 + 1 only.
For sum of 8, you could get 4 + 4 or 3 + 5 or 2 + 6 etc.
So probability of getting sum of 8 would be higher.

In the same way, the order matters in this question.
avatar
ManonLi
Joined: 01 Nov 2014
Last visit: 10 Apr 2017
Posts: 16
Posts: 16
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi guys, I don't quite understand why we square 4 instead of factorial of 4. Could you please help?
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
ManonZ
Hi guys, I don't quite understand why we square 4 instead of factorial of 4. Could you please help?


Do you mean in the total number of cases? If yes, then it is actually 2^4.
First child can happen in 2 ways (boy or girl).
Second, third and fourth kids can also happen in 2 ways.
Total number of ways = 2*2*2*2 = 16
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [5]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [5]
2
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Hi All,

There are a couple of ways to answer this question:

1) You could make a table of all the options (there are only 16 possible outcomes) and count up all the ways to get 2 boys and 2 girls

or

2) You can do the math

Here's the math approach:

Since each child has an equal chance of ending up as a boy or girl, there are 2^4 possibilities = 16 possibilities

It also doesn't matter which 2 of the 4 children are boys, so you can treat this part of the question as a combination formula question...

4c2 = 4!/[2!2!] = 6 ways to get 2 boys and 2 girls

Final Answer =
6/16 = 3/8 = A


GMAT assassins aren't born, they're made,
Rich
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,391
 [14]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,391
 [14]
9
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
Bunuel
The Official Guide For GMAT® Quantitative Review, 2ND Edition

A couple decides to have 4 children. If they succeed in having 4 children and each child is equally likely to be a boy or a girl, what is the probability that they will have exactly 2 girls and 2 boys?

(A) 3/8
(B) 1/4
(C) 3/16
(D) 1/8
(E) 1/16

We need to determine the probability of P(B-B-G-G).

P(B-B-G-G) = (1/2)^4 = 1/16

The number of ways to arrange B-B-G-G is 4C2 = 4!/(2! x 2!) = 3 x 2 = 6.

Thus, the total probability is 6/16 = 3/8.

Answer: A
avatar
shavarna
avatar
Current Student
Joined: 14 Sep 2017
Last visit: 07 Sep 2022
Posts: 6
Own Kudos:
Given Kudos: 3
Location: United States (OR)
GMAT 1: 700 Q49 V36
GPA: 3.33
GMAT 1: 700 Q49 V36
Posts: 6
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I thought that order does not matter for when child is born, therefore
Total number of events = 5 (explained below)

0 Boys 4 Girls
1 Boy 3 Girls
2 Boys 2 Girls
3 Boys 1 Girl
4 Boys 0 Girl

Probability (2 B and 2 G exactly) = 1/5

Not sure where I am assuming and making a mistake.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,807
 [1]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shavarna
I thought that order does not matter for when child is born, therefore
Total number of events = 5 (explained below)

0 Boys 4 Girls
1 Boy 3 Girls
2 Boys 2 Girls
3 Boys 1 Girl
4 Boys 0 Girl

Probability (2 B and 2 G exactly) = 1/5

Not sure where I am assuming and making a mistake.

Hi shavarna,

The 5 options you've listed are NOT all equally likely, so you would have to do a bit more work to get to the correct answer. There are a couple of ways to answer this question:

1) You could make a table of all the options (since each child could be a boy or a girl, there are only 2^4 = 16 possible outcomes) and determine all the ways to get 2 boys and 2 girls

or

2) You can do the math

Here's the math approach:

Since each child has an equal chance of ending up as a boy or girl, there are 2^4 possibilities = 16 possibilities. It also doesn't matter which 2 of the 4 children are boys, so you can treat this part of the question as a combination formula question...

4c2 = 4!/[2!2!] = 6 ways to get 2 boys and 2 girls out of 16 possibilities. 6/16 = 3/8

Final Answer =
GMAT assassins aren't born, they're made,
Rich
User avatar
Gmatprep550
Joined: 21 Jul 2018
Last visit: 08 Nov 2019
Posts: 145
Own Kudos:
73
 [1]
Given Kudos: 186
Products:
Posts: 145
Kudos: 73
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
EMPOWERgmatRichC
shavarna
I thought that order does not matter for when child is born, therefore
Total number of events = 5 (explained below)

0 Boys 4 Girls
1 Boy 3 Girls
2 Boys 2 Girls
3 Boys 1 Girl
4 Boys 0 Girl

Probability (2 B and 2 G exactly) = 1/5

Not sure where I am assuming and making a mistake.

Hi shavarna,

The 5 options you've listed are NOT all equally likely, so you would have to do a bit more work to get to the correct answer. There are a couple of ways to answer this question:

1) You could make a table of all the options (since each child could be a boy or a girl, there are only 2^4 = 16 possible outcomes) and determine all the ways to get 2 boys and 2 girls

or

2) You can do the math

Here's the math approach:

Since each child has an equal chance of ending up as a boy or girl, there are 2^4 possibilities = 16 possibilities. It also doesn't matter which 2 of the 4 children are boys, so you can treat this part of the question as a combination formula question...

4c2 = 4!/[2!2!] = 6 ways to get 2 boys and 2 girls out of 16 possibilities. 6/16 = 3/8

Final Answer =
GMAT assassins aren't born, they're made,
Rich

Hi EMPOWERgmatRichC, chetan2u,

But that's also valid method right as nowhere stated in question that in how many different way this is possible.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Gmatprep550,

The question asks for the PROBABILITY that exactly 2 of the 4 children are boys, so the total number of possible outcomes IS a factor in this question.

If you describe the 5 possible outcomes as...
0 Boys 4 Girls
1 Boy 3 Girls
2 Boys 2 Girls
3 Boys 1 Girl
4 Boys 0 Girl

...then you might think that there is a 1/5 chance of having 2 boys and 2 girls, but that is NOT mathematically correct (since the 5 possible outcomes do NOT all have an equal likelihood of occurring).

GMAT assassins aren't born, they're made,
Rich
 1   2   3   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts