Find all School-related info fast with the new School-Specific MBA Forum

It is currently 30 Aug 2014, 22:21

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If you have an equilateral triangle. That triangle is

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 05 Nov 2007
Posts: 35
Followers: 0

Kudos [?]: 2 [0], given: 0

If you have an equilateral triangle. That triangle is [#permalink] New post 18 Aug 2008, 07:52
If you have an equilateral triangle.
That triangle is enclosed perfectly in a circle such that each corner is exactly touching the edge of the circle.
What is the radius of the circle with relation to one side of the triangle?

Thanks.
3 KUDOS received
SVP
SVP
User avatar
Joined: 07 Nov 2007
Posts: 1829
Location: New York
Followers: 26

Kudos [?]: 442 [3] , given: 5

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 18 Aug 2008, 09:07
3
This post received
KUDOS
gmatatouille wrote:
If you have an equilateral triangle.
That triangle is enclosed perfectly in a circle such that each corner is exactly touching the edge of the circle.
What is the radius of the circle with relation to one side of the triangle?

Thanks.

Attachments

tri-in-circle.gif
tri-in-circle.gif [ 4.65 KiB | Viewed 1768 times ]


_________________

Your attitude determines your altitude
Smiling wins more friends than frowning

1 KUDOS received
SVP
SVP
User avatar
Joined: 30 Apr 2008
Posts: 1893
Location: Oklahoma City
Schools: Hard Knocks
Followers: 29

Kudos [?]: 431 [1] , given: 32

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 18 Aug 2008, 07:56
1
This post received
KUDOS
\frac{1}{3}\sqrt{3}
explanation in a minute...

I think I remember reading somewhere that the center of the circle will be 2/3 from any of the 3 vertices of triangle. So if an equilateral triangle creates 2 30:60:90 triangles back-to-back, then the height of the triangle will be \sqrt{3}, and the radius should be 2/3 of that length. But the question asks for the relation of the radius to any side of the equilateral triangle. The relationship of the "height" of the equilateral triangle to a side is 2:\sqrt{3}. So this would be \frac{2}{3}\sqrt{3}:2 because the radius of the circle to one side of the triangle. This would be the same as dividing \frac{2}{3}\sqrt{3} by 2. so 2/3 * 1/2 = 1/3...or \frac{1}{3}\sqrt{3}. I'm not sure if this is correct, but it seems logical to me.

I think this is correct. see the following link:
http://www.ajdesigner.com/phptriangle/isosceles_triangle_inscribed_circle_radius_r.php
_________________

------------------------------------
J Allen Morris
**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 05 Nov 2007
Posts: 35
Followers: 0

Kudos [?]: 2 [0], given: 0

Re: Equilateral Triangle enclosed in a circle [#permalink] New post 18 Aug 2008, 08:47
This makes sense to me too.
The link you attached, the images don't appear for me, but I vaguely remember reading that 1/3, 2/3 center point as well.
Thanks for the help and quick reply +1
Director
Director
avatar
Joined: 27 May 2008
Posts: 552
Followers: 5

Kudos [?]: 171 [0], given: 0

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 18 Aug 2008, 08:56
i think its very useful to memorize some common sin cos and tan values.

sin 30 = 1/2, sin 60 = sqrt(3)/2, and 45 = 1/sqrt(2)
cos 30 = sqrt(3)/2, cos 60 = 1/2, and cos 45 = 1/sqrt(2)
tan 30 = 1/sqrt(3), tan 60 = sqrt(3), and tan 45 = 1

just remember these 6 values ... its easy..
and it helps a lot in geamatry questions...

for example all i have to do is
hypotneous = r
base = a/2
angle = 30

cos 30 = (a/2)/r = sqrt(3)/2
a/r = sqrt(3)
Intern
Intern
avatar
Joined: 17 Aug 2008
Posts: 20
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Equilateral Triangle enclosed in a circle [#permalink] New post 18 Aug 2008, 09:43
The triangle can be divided into three equal sectors and their point of intersection will be the center of the circle, which is also the centroid of the triangle. The centroid of a triangle is (2/3)*(height); Height = (side*sqrt[3]/2). This will give us the radius to be side/sqrt[3]. Cheers.
SVP
SVP
avatar
Joined: 17 Jun 2008
Posts: 1579
Followers: 12

Kudos [?]: 180 [0], given: 0

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 19 Aug 2008, 21:43
an arc on circle makes double the angle on the center to what it makes on the opposite side on the circle.

With this logic, any of the sides of equilateral triangle will make 120 degree angle at the center of the circle.

Now, if I divide the triangle made by two radii and one side of the triangle into two halves, each of the triangles will be 30, 60, 90 and if r is the radius, then the side of triangle will become r multiplied by root 3.
SVP
SVP
User avatar
Joined: 30 Apr 2008
Posts: 1893
Location: Oklahoma City
Schools: Hard Knocks
Followers: 29

Kudos [?]: 431 [0], given: 32

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 20 Aug 2008, 03:57
Attachment:
CircleAngle.jpg
CircleAngle.jpg [ 5.01 KiB | Viewed 1682 times ]


Looking at the picture above, does Angle ABC work with this rule? If Angle ABC is 52 degrees, is arc AC 104 degrees even though the angle is not uniform (i.e., isosceles or equilateral).

scthakur wrote:
an arc on circle makes double the angle on the center to what it makes on the opposite side on the circle.

With this logic, any of the sides of equilateral triangle will make 120 degree angle at the center of the circle.

Now, if I divide the triangle made by two radii and one side of the triangle into two halves, each of the triangles will be 30, 60, 90 and if r is the radius, then the side of triangle will become r multiplied by root 3.

_________________

------------------------------------
J Allen Morris
**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

Get the best GMAT Prep Resources with GMAT Club Premium Membership

CEO
CEO
User avatar
Joined: 29 Aug 2007
Posts: 2501
Followers: 53

Kudos [?]: 500 [0], given: 19

GMAT Tests User
Re: Equilateral Triangle enclosed in a circle [#permalink] New post 20 Aug 2008, 12:51
gmatatouille wrote:
If you have an equilateral triangle.
That triangle is enclosed perfectly in a circle such that each corner is exactly touching the edge of the circle.
What is the radius of the circle with relation to one side of the triangle?

Thanks.



Equilatral triangle with side a inscribed in a circle has r equal to a/sqrt (3)
_________________

Verbal: new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html


GT

Re: Equilateral Triangle enclosed in a circle   [#permalink] 20 Aug 2008, 12:51
    Similar topics Author Replies Last post
Similar
Topics:
4 Experts publish their posts in the topic Equilateral triangle BDF is inscribed in equilateral triangl Nusa84 8 19 Jun 2010, 07:17
Equilateral triangle? mrsmarthi 4 13 Oct 2009, 20:08
Equilateral Triangle.. haas_mba07 3 09 Sep 2006, 19:51
If an equilateral triangle and a square have the same area, mrmikec 2 16 Jun 2006, 14:15
PS Circle and Equilateral Triangle GMATT73 4 11 Dec 2005, 03:47
Display posts from previous: Sort by

If you have an equilateral triangle. That triangle is

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.