Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Jul 2014, 07:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Math: Standard Deviation

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
User avatar
Status: Happy to join ROSS!
Joined: 29 Sep 2010
Posts: 279
Concentration: General Management, Strategy
Schools: Ross '14 (M)
Followers: 17

Kudos [?]: 100 [0], given: 48

GMAT Tests User
Re: Math: Standard Deviation [#permalink] New post 19 Jan 2011, 03:20
To confirm understanding: if we rephrase the example 4 to say:
Example #4
Q: There is a set A of 19 integers with mean 4 and standard deviation of 3. Now we form a new set B by adding 2 more elements to the set A. What two elements will increase the standard deviation the most?
A) 9 and 3
B) -3 and 3
C) 6 and 1
D) 4 and 5
E) 5 and 5

Then the solution will be B (gives 8 points increase to the variation)?
Manager
Manager
avatar
Joined: 08 Sep 2010
Posts: 172
Followers: 0

Kudos [?]: 14 [0], given: 18

GMAT Tests User
Re: Math: Standard Deviation [#permalink] New post 05 Jun 2011, 07:45
Vorskl wrote:
To confirm understanding: if we rephrase the example 4 to say:
Example #4
Q: There is a set A of 19 integers with mean 4 and standard deviation of 3. Now we form a new set B by adding 2 more elements to the set A. What two elements will increase the standard deviation the most?
A) 9 and 3
B) -3 and 3
C) 6 and 1
D) 4 and 5
E) 5 and 5

Then the solution will be B
(gives 8 points increase to the variation)
?


Your answer is correct but the "variance" need not be an increase of 8.
_________________

My will shall shape the future. Whether I fail or succeed shall be no man's doing but my own.

If you like my explanations award kudos.

Manager
Manager
avatar
Joined: 08 Sep 2010
Posts: 172
Followers: 0

Kudos [?]: 14 [0], given: 18

GMAT Tests User
Re: Math: Standard Deviation [#permalink] New post 09 Jun 2011, 20:52
Not seen any questions for Normal distribution, is it tested on GMAT?
_________________

My will shall shape the future. Whether I fail or succeed shall be no man's doing but my own.

If you like my explanations award kudos.

Expert Post
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3604
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 349

Kudos [?]: 1682 [0], given: 354

GMAT ToolKit User GMAT Tests User Premium Member
Re: Math: Standard Deviation [#permalink] New post 10 Jun 2011, 03:45
Expert's post
puneetj wrote:
Not seen any questions for Normal distribution, is it tested on GMAT?


You are right. I should change "you can rarely see" to "you will never see"
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Intern
Intern
User avatar
Joined: 17 May 2011
Posts: 2
Location: Summit
Schools: Columbia Business school,Johnson Business school
Followers: 0

Kudos [?]: 0 [0], given: 3

Re: Math: Standard Deviation [#permalink] New post 16 Jun 2011, 17:09
Very very useful and easy to understand.Thanks so much :-D
1 KUDOS received
Intern
Intern
avatar
Joined: 29 Jun 2011
Posts: 37
Followers: 0

Kudos [?]: 2 [1] , given: 0

Re: Math: Standard Deviation [#permalink] New post 13 Jul 2011, 06:43
1
This post received
KUDOS
Could you pls explain why (2) alone is not insufficient? Is it because we don't have information of the number elements? that's why (2) is telling nothing useful? thanks....

Example #2
Q: There is a set of consecutive even integers. What is the standard deviation of the set?
(1) There are 39 elements in the set.
(2) the mean of the set is 382.
Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3604
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 349

Kudos [?]: 1682 [1] , given: 354

GMAT ToolKit User GMAT Tests User Premium Member
Re: Math: Standard Deviation [#permalink] New post 13 Jul 2011, 08:35
1
This post received
KUDOS
Expert's post
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Intern
Intern
avatar
Joined: 29 Jun 2011
Posts: 37
Followers: 0

Kudos [?]: 2 [0], given: 0

Re: Math: Standard Deviation [#permalink] New post 13 Jul 2011, 17:26
thank you :)
Manager
Manager
avatar
Joined: 11 Jul 2012
Posts: 51
GMAT 1: 650 Q49 V29
Followers: 0

Kudos [?]: 3 [0], given: 19

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 06:57
walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.


I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 07:05
Expert's post
avaneeshvyas wrote:
walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.


I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....


Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.


You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Answer: A.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 11 Jul 2012
Posts: 51
GMAT 1: 650 Q49 V29
Followers: 0

Kudos [?]: 3 [0], given: 19

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 07:30
Bunuel wrote:
avaneeshvyas wrote:
walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.


I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....


Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.


You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Answer: A.

Hope it's clear.


Extending your logic can we go on to say that the sum of 39 consecutive even integers will be the same as that of a set with 39 consecutive odd integers and a constant added to it.....E.G: a set {4, 6, 8, ..., 80} can be obtained by adding 3 to a set {1, 3, 5, ..., 77}....
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 07:32
Expert's post
avaneeshvyas wrote:
Bunuel wrote:
avaneeshvyas wrote:
Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.


You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Answer: A.

Hope it's clear.


Extending your logic can we go on to say that the sum of 39 consecutive even integers will be the same as that of a set with 39 consecutive odd integers and a constant added to it.....E.G: a set {4, 6, 8, ..., 80} can be obtained by adding 3 to a set {1, 3, 5, ..., 77}....


Yes, that's correct.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 11 Jul 2012
Posts: 51
GMAT 1: 650 Q49 V29
Followers: 0

Kudos [?]: 3 [0], given: 19

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 08:05
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 08:08
Expert's post
avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....


Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 11 Jul 2012
Posts: 51
GMAT 1: 650 Q49 V29
Followers: 0

Kudos [?]: 3 [0], given: 19

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 09:08
Bunuel wrote:
avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....


Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.



could you put in an example for the same and also how then to go about such problems
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 15 Oct 2012, 09:13
Expert's post
avaneeshvyas wrote:
Bunuel wrote:
avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....


Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.



could you put in an example for the same and also how then to go about such problems


Check our question banks (viewforumtags.php) for more questions on SD.

DS questions on SD: search.php?search_id=tag&tag_id=34
PS questions on SD: search.php?search_id=tag&tag_id=55

Also, from my signature:
PS SD-problems: [PS Standard Deviation Problems]
DS SD-problems: [DS Standard Deviation Problems]


Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 10 Jul 2013, 23:07
Expert's post
Intern
Intern
avatar
Joined: 24 Dec 2013
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 2

Re: Math: Standard Deviation [#permalink] New post 09 Apr 2014, 00:05
Under the "Properties "section , when a new element is added to a set ,it says , newer standard deviation is greater than the older standard deviation if | y - mean| >older standard deviation. Which mean is it alluding to? The mean after having a new element in the set or the old mean without the new element?

Posted from my mobile device Image
Intern
Intern
avatar
Joined: 25 Jan 2014
Posts: 41
Concentration: Strategy, International Business
GMAT 1: 600 Q44 V29
GMAT 2: 710 Q48 V38
GPA: 3.35
WE: Analyst (Computer Software)
Followers: 0

Kudos [?]: 10 [0], given: 4

Re: Math: Standard Deviation [#permalink] New post 12 May 2014, 04:38
Bunuel, so even for a set of consecutive odd integers, the S.D will be the same for a particular number of integers, whatever the integers may be?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18683
Followers: 3229

Kudos [?]: 22166 [0], given: 2601

Re: Math: Standard Deviation [#permalink] New post 12 May 2014, 05:07
Expert's post
gaurav1418z wrote:
Bunuel, so even for a set of consecutive odd integers, the S.D will be the same for a particular number of integers, whatever the integers may be?


For equal number of terms, yes. For example, {1, 3, 5, 7} and {11, 13, 15, 17} have the same standard deviation: \sqrt{5}.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: Math: Standard Deviation   [#permalink] 12 May 2014, 05:07
    Similar topics Author Replies Last post
Similar
Topics:
1 Experts publish their posts in the topic Standard Deviation tenaman10 11 10 Mar 2009, 05:03
4 standard deviation Zaur 5 08 Feb 2009, 01:10
Standard Deviation pretttyune 2 05 Nov 2007, 05:45
Standard Deviation usman7 5 12 Dec 2006, 03:38
Standard Deviation riiesun 3 23 Oct 2004, 01:17
Display posts from previous: Sort by

Math: Standard Deviation

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 40 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.