Last visit was: 19 Nov 2025, 15:31 It is currently 19 Nov 2025, 15:31
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
655-705 Level|   Geometry|   Inequalities|                  
User avatar
tonebeeze
Joined: 19 Nov 2009
Last visit: 15 Jan 2015
Posts: 78
Own Kudos:
3,093
 [750]
Given Kudos: 210
Status:Current MBA Student
Concentration: Finance, General Management
GMAT 1: 720 Q49 V40
28
Kudos
Add Kudos
720
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [298]
163
Kudos
Add Kudos
134
Bookmarks
Bookmark this Post
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [42]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [42]
31
Kudos
Add Kudos
11
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,354
 [34]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,354
 [34]
27
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?

a. \(y > \sqrt {2}\)

b. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

c. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

d. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

e. \(y < \frac {\sqrt {3}}{4}\)

Area of triangle \(= \frac{base \times height}{2}\)

There are infinitely many right triangles that have an area of 1.
So, one approach is to find a triangle that meets the given conditions, and then see what conclusions we can draw.

Here's one such right triangle:

Aside: There's no need to calculate the actual value of z (which is √5), since the question isn't asking us about the possible values of z.

This triangle meets the condition that its area is 1, and that x < y < z
With this particular triangle, y = 2

When we check the answer choices, only one option (answer choice A) allows for y to equal 2

Answer: A

Cheers,
Brent
General Discussion
User avatar
rohansharma
Joined: 07 Feb 2011
Last visit: 16 Apr 2013
Posts: 7
Own Kudos:
29
 [1]
Given Kudos: 26
Status:Focus is the Key
Concentration: Strategy, Technology
Schools: ISB
GMAT 1: 710 Q49 V38
GPA: 3.35
WE:Consulting (Telecommunications)
Schools: ISB
GMAT 1: 710 Q49 V38
Posts: 7
Kudos: 29
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?

a. \(y > \sqrt {2}\)

b. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

c. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

d. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

e. \(y < \frac {\sqrt {3}}{4}\)

The area of the triangle is \(\frac{xy}{2}=1\) (\(x<y<z\) means that hypotenuse is \(z\)) --> \(x=\frac{2}{y}\). As \(x<y\), then \(\frac{2}{y}<y\) --> \(2<y^2\) --> \(\sqrt{2}<y\).

Answer: A.

Also note that max value of \(y\) is not limited at all. For example \(y\) can be \(1,000,000\) and in this case \(\frac{xy}{2}=\frac{x*1,000,000}{2}=1\) --> \(x=\frac{2}{1,000,000}\).

Hope it helps.


Dear Bunuel,

While solving the question ,I assumed it to be the special 90,60,30 triangle.
Am I wrong in following that approach ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,366
 [1]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rohansharma
While solving the question ,I assumed it to be the special 90,60,30 triangle.
Am I wrong in following that approach ?

We are just told that the triangle is right, not that it's a special kind like 30-60-90 or 45-45-90.
avatar
subhajeet
Joined: 12 Jun 2010
Last visit: 11 Feb 2013
Posts: 77
Own Kudos:
255
 [4]
Given Kudos: 1
Status:MBA Aspirant
Location: India
Concentration: Finance, International Business
WE:Information Technology (Finance: Investment Banking)
Posts: 77
Kudos: 255
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
OA is A
since this is a rt angled triangle so z is th hypotnuse
and given xy = 2
so as x decreased y increases. Now if x is 1 then y is 2, when x is 1/2 y is 4.
Only option A supports this result.
avatar
2flY
Joined: 31 Dec 2012
Last visit: 24 May 2013
Posts: 3
Own Kudos:
7
 [1]
Given Kudos: 55
GMAT 1: 700 Q44 V42
GMAT 1: 700 Q44 V42
Posts: 3
Kudos: 7
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
\(x=\frac{2}{y}\). As \(x<y\), then \(\frac{2}{y}<y\)



Could you explain why that is?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,366
 [4]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [4]
4
Kudos
Add Kudos
Bookmarks
Bookmark this Post
2flY
Bunuel
\(x=\frac{2}{y}\). As \(x<y\), then \(\frac{2}{y}<y\)



Could you explain why that is?

Just substitute x with \(\frac{2}{y}\) in \(x<y\) to get \(\frac{2}{y}<y\).
User avatar
WoundedTiger
Joined: 25 Apr 2012
Last visit: 25 Sep 2024
Posts: 521
Own Kudos:
Given Kudos: 740
Location: India
GPA: 3.21
WE:Business Development (Other)
Products:
Posts: 521
Kudos: 2,534
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rohansharma
Bunuel
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?

a. \(y > \sqrt {2}\)

b. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

c. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

d. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

e. \(y < \frac {\sqrt {3}}{4}\)

The area of the triangle is \(\frac{xy}{2}=1\) (\(x<y<z\) means that hypotenuse is \(z\)) --> \(x=\frac{2}{y}\). As \(x<y\), then \(\frac{2}{y}<y\) --> \(2<y^2\) --> \(\sqrt{2}<y\).

Answer: A.

Also note that max value of \(y\) is not limited at all. For example \(y\) can be \(1,000,000\) and in this case \(\frac{xy}{2}=\frac{x*1,000,000}{2}=1\) --> \(x=\frac{2}{1,000,000}\).

Hope it helps.


Dear Bunuel,

While solving the question ,I assumed it to be the special 90,60,30 triangle.
Am I wrong in following that approach ?


Hi Bunuel,

The Q stem says that sides are x<y<z and it is a right angle triangle. So we can assume that it will be 30-60-90 triangle. Had it been 45-45-90 triangle then the 2 sides ie base and perpendicular would have been equal and therefore x=y and x,y<z

I guess it should be okay to assume that it is 30-60 -90 triangle.

Please confirm
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,366
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,366
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
mridulparashar1
rohansharma
Bunuel

The area of the triangle is \(\frac{xy}{2}=1\) (\(x<y<z\) means that hypotenuse is \(z\)) --> \(x=\frac{2}{y}\). As \(x<y\), then \(\frac{2}{y}<y\) --> \(2<y^2\) --> \(\sqrt{2}<y\).

Answer: A.

Also note that max value of \(y\) is not limited at all. For example \(y\) can be \(1,000,000\) and in this case \(\frac{xy}{2}=\frac{x*1,000,000}{2}=1\) --> \(x=\frac{2}{1,000,000}\).

Hope it helps.


Dear Bunuel,

While solving the question ,I assumed it to be the special 90,60,30 triangle.
Am I wrong in following that approach ?


Hi Bunuel,

The Q stem says that sides are x<y<z and it is a right angle triangle. So we can assume that it will be 30-60-90 triangle. Had it been 45-45-90 triangle then the 2 sides ie base and perpendicular would have been equal and therefore x=y and x,y<z

I guess it should be okay to assume that it is 30-60 -90 triangle.

Please confirm

Yes, if it were 45-45-90, then we would have that x=y<z. BUT, knowing that it's not a 45-45-90 right triangle does NOT mean that it's necessarily 30-60-90 triangle: there are numerous other right triangles. For example, 10-80-90, 11-79-90, 25-65-90, ...

Hope it's clear.
avatar
Dienekes
Joined: 13 Feb 2011
Last visit: 18 Jan 2020
Posts: 63
Own Kudos:
189
 [2]
Given Kudos: 3,386
GMAT 1: 730 Q49 V41
Posts: 63
Kudos: 189
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
One other way that I noticed to solve this problem is to check the length of \(y\) when \(x=y\), i.e. 45,45,90. In that case \(x=y=\sqrt{2}\), however as \(y>x\), it'd always need to be \(>\sqrt{2}\).

HTH
User avatar
ENGRTOMBA2018
Joined: 20 Mar 2014
Last visit: 01 Dec 2021
Posts: 2,325
Own Kudos:
3,837
 [4]
Given Kudos: 816
Concentration: Finance, Strategy
GMAT 1: 750 Q49 V44
GPA: 3.7
WE:Engineering (Aerospace and Defense)
Products:
GMAT 1: 750 Q49 V44
Posts: 2,325
Kudos: 3,837
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Bunuel
The Official Guide For GMAT® Quantitative Review, 2ND Edition

A certain right triangle has sides of length x, y, and z, where x < y < z, If the area of this triangular region is 1, which of the following indicates all of the possible values of y ?

(A) \(y >\sqrt{2}\)

(B) \(\frac{\sqrt{3}}{2}<y<\sqrt{2}\)

(C) \(\frac{\sqrt{2}}{3}<y<\frac{\sqrt{3}}{2}\)

(D) \(\frac{\sqrt{3}}{4} < y <\frac{\sqrt{2}}{3}\)

(E) \(y<\frac{\sqrt{3}}{4}\)


First step will be to breakdown the options into recognizable decimal representations (assuming \(\sqrt{2} \approx 1.4\), \(\sqrt{3} \approx 1.7\))

A) y>1.4
B) 0.8<y<1.4
C) 0.5<y<0.8
D) 0.4<y<0.5
E) y<0.4

We are given that x<y<z and that 0.5*x*y=1 --> x*y=2

Now from the relation xy=2 --> go back to the options and test for y=1. You get x=2 but we are given that x<y ---> y MUST be > \(\approx\)1.4 such that x < y

For any value of y < 1.4 , you will end up getting x>y (try with y=0.5 or 0.75 etc).

Only A satisfies this condition and is hence the correct answer.

Hope this helps.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [6]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [6]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?


A. \(y > \sqrt {2}\)

B. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

C. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

D. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

E. \(y < \frac {\sqrt {3}}{4}\)


Since it is a right triangle, z is the greatest side and hence the hypotenuse.

So area of the triangle will be (1/2)*xy = 1
xy = 2

Note that x < y.
If x were equal to y, \(x = y = \sqrt{2}\)
Since x is less than y, \(y > \sqrt{2}\) and \(x < \sqrt{2}\)

Answer (A)
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,354
 [2]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,354
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
The Official Guide For GMAT® Quantitative Review, 2ND Edition

A certain right triangle has sides of length x, y, and z, where x < y < z, If the area of this triangular region is 1, which of the following indicates all of the possible values of y ?

(A) \(y >\sqrt{2}\)

(B) \(\frac{\sqrt{3}}{2}<y<\sqrt{2}\)

(C) \(\frac{\sqrt{2}}{3}<y<\frac{\sqrt{3}}{2}\)

(D) \(\frac{\sqrt{3}}{4} < y <\frac{\sqrt{2}}{3}\)

(E) \(y<\frac{\sqrt{3}}{4}\)

If x < y < z, then our RIGHT triangle looks something like this (where the hypotenuse is always the longest side)


When we scan the answer choices (ALWAYS scan the answer choices before performing any calculations!), I see that B, C, D and E all provide a MAXIMUM value of y.
This should be a bit of a surprise, because there's no limit to the length of each leg of the triangle.

GIVEN: The triangle has area 1
Area = (base)(height)/2
So, here's one possible triangle with area 1:

ASIDE: Area = (10)(0.2)/2 = 2/2 = 1 (voila!)

In this triangle, x = 0.2, y = 10 and z = some number greater than 10
Since it's possible for y to equal 10, we can eliminate answer choices B, C, D and E

Answer: A

RELATED VIDEO
User avatar
mimajit
Joined: 03 Aug 2017
Last visit: 24 Jun 2020
Posts: 75
Own Kudos:
28
 [1]
Given Kudos: 85
Posts: 75
Kudos: 28
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?


A. \(y > \sqrt {2}\)

B. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

C. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

D. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

E. \(y < \frac {\sqrt {3}}{4}\)

Since it is a right triangle, z is the greatest side and hence the hypotenuse.

So area of the triangle will be (1/2)*xy = 1
xy = 2

Note that x < y.
so for XY to be 2 either x=2 and Y=1 or Y =2 and X =1

we are already told x < y. so Y has to be 2.... and Root2 = 1.4 and since we now know y =2 option A
User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 19 Nov 2025
Posts: 5,794
Own Kudos:
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,794
Kudos: 5,511
Kudos
Add Kudos
Bookmarks
Bookmark this Post
tonebeeze
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?


A. \(y > \sqrt {2}\)

B. \(\frac {\sqrt {3}} {2} < y < \sqrt {2}\)

C. \(\frac {\sqrt {2}} {3} < y < \frac {\sqrt {3}} {2}\)

D. \(\frac {\sqrt {3}} {4} < y < \frac {\sqrt {2}} {3}\)

E. \(y < \frac {\sqrt {3}}{4}\)

Given: A certain right triangle has sides of length x, y, and z, where x < y < z.

Asked: If the area of this triangular region is 1, which of the following indicates all of the possible values of y?

Area of right triangle = xy/2 = 1
xy = 2
x = 2/y < y
\(y^2 >2\)
\(y > \sqrt{2}\)

IMO A
User avatar
rahulbhusan
Joined: 08 Jan 2020
Last visit: 18 Dec 2021
Posts: 34
Own Kudos:
19
 [1]
Posts: 34
Kudos: 19
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given, the area of this triangular region is 1 and x < y < z.
So, area of triangle= 1/2*x*y ( as it's a right angled triangle, so z must be the hypotenuse, and x and y can be either base or height)
=> 1/2*x*y=1
=> x*y=2
now, lets find the minimum value for y (or maximum value of x).
As, its a right angled triangle, the maximum value of x will be when its a isosceles right triangle i.e. 45:45:90 triangle.
=> x=y<z
so, x*y=2
=>x*x=2 (i.e minimum value of y)
=> x^2=2
=> x=√2
But, as we know that y>x,
so, y>√2. Option A
User avatar
Basshead
Joined: 09 Jan 2020
Last visit: 07 Feb 2024
Posts: 925
Own Kudos:
Given Kudos: 432
Location: United States
Posts: 925
Kudos: 302
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A certain right triangle has sides of length x, y, and z, where x < y < z. If the area of this triangular region is 1, which of the following indicates all of the possible values of y?

We can approximate:
\(\sqrt{2} = 1.4\)
\(\sqrt{3} = 1.7\)

If the area of the triangular region = 1, this means \(\frac{xy}{2} = 1\)

A) \(y > 1.4\)

B) \(0.7 < y < 1.4\)

C) \(\frac{1.4}{3} < y < \frac{1.7}{2}\)

D) \(\frac{1.7}{4} < y < \frac{1.4}{3}\)

E) \(y < \frac{1.7}{4}\)

The only range that works is \(y > 1.4\). Answer is A.
avatar
anniaustin
Joined: 18 Dec 2019
Last visit: 03 May 2022
Posts: 26
Own Kudos:
Given Kudos: 16
Posts: 26
Kudos: 9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
\(xy=2\),
or, \(x=\frac{2}{y}\)
\(x<y\)
or, \(\frac{2}{y}<y\)
or, \(2<y^2\)
or, \(y>2\)

Answer: A
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts