Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Jul 2014, 05:01

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

In a room filled with 7 people, 4 people have exactly 1

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 14

Kudos [?]: 178 [1] , given: 11

GMAT ToolKit User GMAT Tests User
Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 12 Nov 2012, 04:38
1
This post received
KUDOS
Ways to select the those 4 with their sibling?

4/7 x 1/6 = 4/42

Ways to select those 3 with one of their 2 siblings?

3/7 x 2/6 = 6/42

P = 1 - (4/42 + 6/42) = 1 - 10/42 = (42 -10)/42 = 32/42 = 16/21

P = 16/21

Answer: E

_________________

Impossible is nothing to God.

Intern
Intern
avatar
Joined: 11 Dec 2012
Posts: 3
Followers: 0

Kudos [?]: 5 [0], given: 3

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 13 Dec 2012, 14:08
well, this is how i approached it...

Total 7 people - 1,2,3,4,5,6,7
4 people have 1 sibling - [1,2];[3,4] - 2 single-sibling groups
3 people have 2 siblings - [5,6,7] - 1 two-siblings group

Total ways to select 2 people, 7C2 = 21.
Ways to select only siblings : 2C1( ways to select 1 group from 2 single-sibling groups) + 3C2( ways to select 2 people from 2 sibling-group) = 2+3= 5

Probability that NO siblings selected = 1- 5/21 = 16/21.

Hence, D.

Please let me know if my approach is flawed.

_________________

What happens with me is less significant than what happens within me!
Consider giving Kudos, appreciation is divine.

Intern
Intern
avatar
Joined: 04 Jan 2013
Posts: 14
Location: India
Concentration: Finance
GMAT Date: 08-26-2013
GPA: 2.83
WE: Other (Other)
Followers: 0

Kudos [?]: 7 [0], given: 1

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 15 May 2013, 00:26
WarriorGmat wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A) 5/21
B) 3/7
C) 4/7
D) 5/7
E) 16/21


If A is a sibling of B, then B is also a sibling of A.
If A is a sibling of B, and B is a sibling of C, that means A is also a sibling of C.

For first four people to have exactly one sibling each means two pairs of siblings.
For last 3 people to have exactly two siblings each means one triplet of siblings.

Now, to select two individuals from a group of 7, total no. of ways it can be done = 7C2 = 21

Cases if siblings are selected : 1. Pair 1
2. Pair 2
3,4,5 = 2 individuals from triplet of siblings = 3C2 = 3 ways.

So, there are 5 cases in which selected individuals are siblings.

Therefore, probability of two individuals selected are NOT sibligs is (21-5)/21 = 16/21
Intern
Intern
avatar
Joined: 09 Feb 2013
Posts: 8
Followers: 0

Kudos [?]: 1 [0], given: 6

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 15 May 2013, 00:33
mkdureja wrote:
WarriorGmat wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A) 5/21
B) 3/7
C) 4/7
D) 5/7
E) 16/21


If A is a sibling of B, then B is also a sibling of A.
If A is a sibling of B, and B is a sibling of C, that means A is also a sibling of C.

For first four people to have exactly one sibling each means two pairs of siblings.
For last 3 people to have exactly two siblings each means one triplet of siblings.

Now, to select two individuals from a group of 7, total no. of ways it can be done = 7C2 = 21

Cases if siblings are selected : 1. Pair 1
2. Pair 2
3,4,5 = 2 individuals from triplet of siblings = 3C2 = 3 ways.

So, there are 5 cases in which selected individuals are siblings.

Therefore, probability of two individuals selected are NOT sibligs is (21-5)/21 = 16/21

Hi mkdureja,
Can you please elaborate on this please?
Thanks.
1 KUDOS received
Intern
Intern
avatar
Joined: 04 Jan 2013
Posts: 14
Location: India
Concentration: Finance
GMAT Date: 08-26-2013
GPA: 2.83
WE: Other (Other)
Followers: 0

Kudos [?]: 7 [1] , given: 1

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 15 May 2013, 01:01
1
This post received
KUDOS
Hi,

Que:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

Case 1:
4 people have exactly 1 sibling :
Let A, B, C, D be those 4 people
If A is sibling of B, then B is also a sibling of A.
Basically, they have to exist in pairs
Therefore, these four people compose of two pairs of siblings.

Case 2:
3 people have exactly 2 siblings :
This must obviously be a triplet of siblings.
Let them be E, F, G.
If E is sibling of F, and also is sibling of G., it means F and G are also siblings of each other.
E is sibling of exactly 2 : F and G
F is sibling of exactly 2 : E and G
G is sibling of exactly 2 : E and F
This group has three pairs of siblings.

Now, selecting two individuals out of the group of 7 people has:
1) Two Pairs, as in Case 1.
2) Three Pairs, as in Case 2.
So, 5 cases out of a total of 7C2 = 21 cases.

Hope it clarifies. If you have any further doubt, please point to exactly where you are having a problem understanding it.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 15 May 2013, 01:07
Expert's post
WarriorGmat wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A) 5/21
B) 3/7
C) 4/7
D) 5/7
E) 16/21


Merging similar topics. Please refer to the solutions on page 1 (for example: in-a-room-filled-with-7-people-4-people-have-exactly-87550.html#p645861)

Similar question to practice: a-dog-breeder-currently-has-9-breeding-dogs-6-of-the-dogs-131992.html

Hope it helps.

P.S. Please search before posting. Thank you.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 05 Jul 2013, 01:26
Expert's post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE


_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

2 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 17 Dec 2012
Posts: 386
Location: India
Followers: 10

Kudos [?]: 151 [2] , given: 9

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 05 Jul 2013, 21:07
2
This post received
KUDOS
reply2spg wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21


It is first important to understand the problem. So let us first assume a specific case.

1. Assume the 7 people are A,B, C, D, E, F and G
2. Assume the 4 people who have 1 sibling are A, B, C and D
3. Let's assume A's sibling is B. Therefore B's sibling is A. Similarly for C and D.
4. So we are left with E, F and G. Each should have exactly 2 siblings.
5. E's siblings will be F and G. So F's siblings will be E and G and G's siblings will be E and F
6. Now look at the general case.
7.Total number of ways of selecting 2 people out of 7 people is 7C2=21
8. Instead of A, B, C and D assume any 4 people. We can see for every such 4 people assumed, there are 2 cases where the selected 2 will be siblings. In the case we assumed they are A and B or C and D. This gives one of the favorable outcomes
9. Or the 2 people selected being siblings may come out of the 3 siblings. The number of favorable outcomes is 3 as we can see in the specific case they are E and F, or F and G or E and G.
10. The total number of favorable outcomes for the selected two being siblings is 2+3=5.
11. The probability that the two selected are siblings is 5/21.
12, Therefore the probability that the two selected are not siblings is 1-5/21= 16/21

_________________

Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravna.com/courses.php

Classroom Courses in Chennai
Online and Correspondence Courses

Senior Manager
Senior Manager
avatar
Joined: 07 Apr 2012
Posts: 297
Followers: 0

Kudos [?]: 13 [0], given: 45

Re: Probability [#permalink] New post 20 Nov 2013, 05:51
Bunuel wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).

Solution #1:
# of selections of 2 out of 7 - C^2_7=21;
# of selections of 2 people which are not siblings - C^1_2*C^1_2 (one from first pair of siblings*one from second pair of siblings)+C^1_2*C^1_3 (one from first pair of siblings*one from triple)+ C1^_2*C^1_3(one from second pair of siblings*one from triple) =4+6+6=16.

P=\frac{16}{21}

Solution #2:
# of selections of 2 out of 7 - C^2_7=21;
# of selections of 2 siblings - C^2_3+C^2_2+C^2_2=3+1+1=5;

P=1-\frac{5}{21}=\frac{16}{21}.

Solution #3:
P=2*\frac{3}{7}*\frac{4}{6}+2*\frac{2}{7}*\frac{2}{6}=\frac{4}{7}+\frac{4}{21}=\frac{16}{21}.

Answer: E.


Hi Bunuel,
Can you explain approach 3?
I do not understand it...
Thanks
1 KUDOS received
Manager
Manager
avatar
Joined: 31 Mar 2013
Posts: 70
Followers: 0

Kudos [?]: 9 [1] , given: 92

CAT Tests
Re: Probability [#permalink] New post 04 Dec 2013, 09:33
1
This post received
KUDOS
Bunuel wrote:

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).



Bunuel, do we have to rename the triple siblings to "5-6-7" instead of "4-5-6"? Because as per whats written above Number 4 will have 3 siblings (3,5 and 6), but the question says they have exactly 2 siblings. Please correct me if I am wrong.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: Probability [#permalink] New post 05 Dec 2013, 01:47
Expert's post
emailmkarthik wrote:
Bunuel wrote:

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).



Bunuel, do we have to rename the triple siblings to "5-6-7" instead of "4-5-6"? Because as per whats written above Number 4 will have 3 siblings (3,5 and 6), but the question says they have exactly 2 siblings. Please correct me if I am wrong.


Yes, it's a typo, should be 5-6-7. Edited. Thank you.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 10 Dec 2013
Posts: 19
Location: India
Concentration: Technology, Strategy
GMAT 1: 710 Q48 V38
GPA: 3.9
WE: Consulting (Consulting)
Followers: 0

Kudos [?]: 6 [0], given: 7

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 14 Jan 2014, 20:53
Quote:
Sure.

We have the following siblings: {1, 2}, {3, 4} and {5, 6, 7}.

Now, in order to select two individuals who are NOT siblings we must select EITHER one from {5, 6, 7} and ANY from {1, 2} or {3, 4} OR one from {1, 2} and another from {3, 4}.

P=2*\frac{3}{7}*\frac{4}{6}+2*\frac{2}{7}*\frac{2}{6}=\frac{4}{7}+\frac{4}{21}=\frac{16}{21}.

3/7 - selecting a sibling from {5, 6, 7}, 4/6 - selecting any from {1, 2} or {3, 4}. Multiplying by 2 since this selection can be don in two ways: the first from {5, 6, 7} and the second from {1, 2} or {3, 4} OR the first from {1, 2} or {3, 4} and the second from {5, 6, 7};

2/7 - selecting a sibling from {1, 2}, 2/6 - selecting a sibling from {3, 4}. Multiplying by 2 since this selection can be don in two ways: the first from {1, 2} and the second from {3, 4} OR the first from {3, 4} and the second from {1, 2}.

Other approaches here: in-a-room-filled-with-7-people-4-people-have-exactly-87550.html#p645861

Hope it's clear.


Hi Bunuel,
Can you please explain to me that why when we use simple probability we need to consider both the cases of selection, if we pick a sibling from the first group of 2 siblings first and then we pick a sibling from the second group of 2 siblings and if we pick a sibling from the second group of 2 siblings first and then we pick a sibling from the first group of 2 siblings.
While if we use combinomatric approach we just count one case i.e. 2C1*2C1 which is for selecting one each from the 2 different 2 sibling groups.
Intern
Intern
avatar
Joined: 19 Mar 2012
Posts: 42
Followers: 0

Kudos [?]: 0 [0], given: 5

GMAT ToolKit User Premium Member
Re: Probability [#permalink] New post 26 Jan 2014, 10:37
Hi Bunuel
Please correct me where I went wrong.
I assumed the 7 siblings in this way.PFA the image.
So this scenario also satisfies that B.C.F have 2 siblings and A,D,E ,G have 1 sibling each.
Now to select two people that are not siblings :
1)I first select A(1/7) and from rest of the people I can select C,D,E,F,G so the probability of selecting other person that is not sibling is (1/5). And this scenario will be vaild for D,E and G as well So the proability=4*(1/7 * 1/5)
2)Now if I select B (1/7) and from rest of the people I can select ,D,E,F,G so the probability of selecting other person that is not sibling is (1/4). And this scenario will be vaild for B,C,F as well So the proability=3*(1/7 * 1/4)
So Total= 4*(1/7 * 1/5) + 3*(1/7 * 1/4)

Which does not lead to a correct answer.
Please HELP!!!!!!!!!!!
And please pardon my bad drawing skills :(

Attachments

File comment: My Solution
Questions.jpg
Questions.jpg [ 20.61 KiB | Viewed 576 times ]

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: Probability [#permalink] New post 27 Jan 2014, 00:28
Expert's post
282552 wrote:
Hi Bunuel
Please correct me where I went wrong.
I assumed the 7 siblings in this way.PFA the image.
So this scenario also satisfies that B.C.F have 2 siblings and A,D,E ,G have 1 sibling each.
Now to select two people that are not siblings :
1)I first select A(1/7) and from rest of the people I can select C,D,E,F,G so the probability of selecting other person that is not sibling is (1/5). And this scenario will be vaild for D,E and G as well So the proability=4*(1/7 * 1/5)
2)Now if I select B (1/7) and from rest of the people I can select ,D,E,F,G so the probability of selecting other person that is not sibling is (1/4). And this scenario will be vaild for B,C,F as well So the proability=3*(1/7 * 1/4)
So Total= 4*(1/7 * 1/5) + 3*(1/7 * 1/4)

Which does not lead to a correct answer.
Please HELP!!!!!!!!!!!
And please pardon my bad drawing skills :(


So, as per your diagram (A, B), (B, C), (C, D) are siblings but (A, C), (A, D), and (B, D) are not? How? This is not what question implies.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 19 Mar 2012
Posts: 42
Followers: 0

Kudos [?]: 0 [0], given: 5

GMAT ToolKit User Premium Member
Re: Probability [#permalink] New post 27 Jan 2014, 05:33
Bunuel wrote:
282552 wrote:
Hi Bunuel
Please correct me where I went wrong.
I assumed the 7 siblings in this way.PFA the image.
So this scenario also satisfies that B.C.F have 2 siblings and A,D,E ,G have 1 sibling each.
Now to select two people that are not siblings :
1)I first select A(1/7) and from rest of the people I can select C,D,E,F,G so the probability of selecting other person that is not sibling is (1/5). And this scenario will be vaild for D,E and G as well So the proability=4*(1/7 * 1/5)
2)Now if I select B (1/7) and from rest of the people I can select ,D,E,F,G so the probability of selecting other person that is not sibling is (1/4). And this scenario will be vaild for B,C,F as well So the proability=3*(1/7 * 1/4)
So Total= 4*(1/7 * 1/5) + 3*(1/7 * 1/4)

Which does not lead to a correct answer.
Please HELP!!!!!!!!!!!
And please pardon my bad drawing skills :(


So, as per your diagram (A, B), (B, C), (C, D) are siblings but (A, C), (A, D), and (B, D) are not? How? This is not what question implies.

I still do not understand .The question simply says "In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room". and my diagram meets the given criterion.Also is it necessary that if A&B and B& C are siblings then A&C also need to be siblings.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: Probability [#permalink] New post 27 Jan 2014, 05:36
Expert's post
282552 wrote:
Bunuel wrote:
282552 wrote:
Hi Bunuel
Please correct me where I went wrong.
I assumed the 7 siblings in this way.PFA the image.
So this scenario also satisfies that B.C.F have 2 siblings and A,D,E ,G have 1 sibling each.
Now to select two people that are not siblings :
1)I first select A(1/7) and from rest of the people I can select C,D,E,F,G so the probability of selecting other person that is not sibling is (1/5). And this scenario will be vaild for D,E and G as well So the proability=4*(1/7 * 1/5)
2)Now if I select B (1/7) and from rest of the people I can select ,D,E,F,G so the probability of selecting other person that is not sibling is (1/4). And this scenario will be vaild for B,C,F as well So the proability=3*(1/7 * 1/4)
So Total= 4*(1/7 * 1/5) + 3*(1/7 * 1/4)

Which does not lead to a correct answer.
Please HELP!!!!!!!!!!!
And please pardon my bad drawing skills :(


So, as per your diagram (A, B), (B, C), (C, D) are siblings but (A, C), (A, D), and (B, D) are not? How? This is not what question implies.

I still do not understand .The question simply says "In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room". and my diagram meets the given criterion.Also is it necessary that if A&B and B& C are siblings then A&C also need to be siblings.


Do you know what a sibling mean? How can (A, B), (B, C), (C, D) be BROTHERS, and (A, C), (A, D), and (B, D) not to be?

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Joined: 28 Apr 2013
Posts: 174
Location: India
GPA: 4
WE: Medicine and Health (Health Care)
Followers: 0

Kudos [?]: 22 [0], given: 84

Re: Probability [#permalink] New post 27 Jan 2014, 18:47
Bunuel wrote:
harithakishore wrote:
total possibilities 2C7=21
possibility that selected siblings = 2C2 + 2C2 + 2C3 = 1 + 1 + 3 =5
probability 1-5/21

vittar..can you please explain 2C3.....


As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).

Let's calculate the probability of opposite event and subtract it from 1. Opposite event would be that chosen 2 individuals are siblings.

# of selections of 2 out of 7 - C^2_7=21;
# of selections of 2 siblings - C^2_3+C^2_2+C^2_2=3+1+1=5, here C^2_3 is the # of ways to choose 2 siblings out of siblings 4-5-6, {C^2_2} is the # of ways to choose 2 siblings out of siblings 1-2, and C^2_2 is the # of ways to choose 2 siblings out of siblings 3-4;

P=1-\frac{5}{21}=\frac{16}{21}.

You can check other approaches in my first post.

Hope it's clear.



Here you have already include 4 in first C^2_3 ; why you again include same group in third C^2_2 is the # of ways to choose 2 siblings out of siblings 3-4 ????

_________________

Thanks for Posting

LEARN TO ANALYSE

+1 kudos if you like

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18693
Followers: 3233

Kudos [?]: 22244 [0], given: 2602

Re: Probability [#permalink] New post 27 Jan 2014, 23:59
Expert's post
rango wrote:
Bunuel wrote:
harithakishore wrote:
total possibilities 2C7=21
possibility that selected siblings = 2C2 + 2C2 + 2C3 = 1 + 1 + 3 =5
probability 1-5/21

vittar..can you please explain 2C3.....


As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (4-5-6).

Let's calculate the probability of opposite event and subtract it from 1. Opposite event would be that chosen 2 individuals are siblings.

# of selections of 2 out of 7 - C^2_7=21;
# of selections of 2 siblings - C^2_3+C^2_2+C^2_2=3+1+1=5, here C^2_3 is the # of ways to choose 2 siblings out of siblings 4-5-6, {C^2_2} is the # of ways to choose 2 siblings out of siblings 1-2, and C^2_2 is the # of ways to choose 2 siblings out of siblings 3-4;

P=1-\frac{5}{21}=\frac{16}{21}.

You can check other approaches in my first post.

Hope it's clear.



Here you have already include 4 in first C^2_3 ; why you again include same group in third C^2_2 is the # of ways to choose 2 siblings out of siblings 3-4 ????


There was a typo. Edited. Check again.

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 10 Dec 2013
Posts: 19
Location: India
Concentration: Technology, Strategy
GMAT 1: 710 Q48 V38
GPA: 3.9
WE: Consulting (Consulting)
Followers: 0

Kudos [?]: 6 [0], given: 7

Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 29 Jan 2014, 10:33
Hi,

Can someone please explain to me that why when we use simple probability we need to consider both the cases of selection i.e. if we pick a sibling from the first group of 2 siblings(A,B) first and then we pick a sibling from the second group of 2 siblings(C,D) and if we pick a sibling from the second group of 2 siblings(C,D) first and then we pick a sibling from the first group of 2 siblings(A,B)
While if we use combinomatric approach we just count one case i.e. 2C1*2C1 which is for selecting one each from the 2 different 2 sibling groups

How is A,C and C,A different if we just have to check that whether the two selected are siblings or not? And if it makes a difference why we did not you permutation instead of combinations?
Verbal Forum Moderator
Verbal Forum Moderator
User avatar
Joined: 22 Mar 2013
Posts: 714
Location: India
GPA: 3.51
WE: Information Technology (Computer Software)
Followers: 8

Kudos [?]: 126 [0], given: 121

Premium Member CAT Tests
Re: In a room filled with 7 people, 4 people have exactly 1 [#permalink] New post 18 May 2014, 23:49
2*\frac{1}{7}*\frac{5}{6}+2*\frac{1}{7}*\frac{5}{6}+3*\frac{1}{7}*\frac{4}{6}
\frac{32}{42} = \frac{16}{21}

_________________

Piyush K
-----------------------
Our greatest weakness lies in giving up. The most certain way to succeed is to try just one more time. ― Thomas A. Edison
Don't forget to press--> Kudos :)
My Articles: WOULD: when to use?
Tip: Before exam a week earlier don't forget to exhaust all gmatprep problems specially for "sentence correction".

Re: In a room filled with 7 people, 4 people have exactly 1   [#permalink] 18 May 2014, 23:49
    Similar topics Author Replies Last post
Similar
Topics:
In a room filled with 7 people, 4 people have exactly 1 suntaurian 1 17 Feb 2008, 13:23
In a room filled with 7 people, 4 people have exactly 1 Hermione 6 04 Nov 2006, 02:28
In a room filled with 7 people, 4 people have exactly 1 Paayal 12 27 Sep 2006, 08:31
In a room filled with 7 people, 4 people have exactly 1 X & Y 7 23 Jun 2006, 19:38
In a room filled with 7 people, 4 people have exactly 1 cool_jonny009 2 13 Feb 2006, 10:22
Display posts from previous: Sort by

In a room filled with 7 people, 4 people have exactly 1

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 40 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.