Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

43% (02:26) correct
57% (01:24) wrong based on 20 sessions

T is the set of y integers ,where 0<y<7.If the average of set T is the positive integer x,which of the following could NOT be the median of the set T? A.0 B.x C.-x D.y/3 E.2y/7 _________________

Median of 5 integers is integer and 2*5/7 is not integer. Hence it is E

Posted from my mobile device

I know that 2*y/7 is the correct answer. However, I don't understand your logic. Median of 5 integers is not an integer. What about 2 integers, 4 integers and 6 integers.

Median can be a non-integer. 1,1,2,3,4,6. y=6, Mean=3, Median=2.5

If you said, median of 2*y/7 would be a non-terminating decimal for 0<y<6 and median of any set will either be a terminating decimal or an integer, then I would have definitely agreed.

Maybe I didn't understand you fully, here. Care to explain? thanks _________________

Hey fluke Consider y=1,3,5 the median of odd number of integers is integer. So you have three cases which can be compared with 2 y/7. Since 2y/7 is never integer for odd values of y I am sure this is the answer. "cannot"be true does not mean "never" be true so you still have cases like y=2,4,6 where the median is non integer.

fluke, This what I found from my notes - Which of the following WOTF (could not be true) has to be done necessarily by elimination. § WOTF cannot be true? Plug in numbers until we find four answers that could be true. Eliminate 4 answers and odd one is the final answer.

You can easily eliminate A,B,C because they are integers. Now lets consider D vs E. Evaluate E - Consider y = 3. The median of odd number of integers MUST be integer and expression 2y/7 is not integer for y=3 Evaluate D - Consider y = 3. y/3 is integer. Hence I have to eliminate D. So in the process I eliminated 4 answer choices A through D to get E.

Pls verify the reasoning and let me know if I have missed anything.

fluke wrote:

gmat1220 wrote:

Median of 5 integers is integer and 2*5/7 is not integer. Hence it is E

Posted from my mobile device

I know that 2*y/7 is the correct answer. However, I don't understand your logic. Median of 5 integers is not an integer. What about 2 integers, 4 integers and 6 integers.

Median can be a non-integer. 1,1,2,3,4,6. y=6, Mean=3, Median=2.5

If you said, median of 2*y/7 would be a non-terminating decimal for 0<y<6 and median of any set will either be a terminating decimal or an integer, then I would have definitely agreed.

Maybe I didn't understand you fully, here. Care to explain? thanks

fluke, This what I found from my notes - Which of the following WOTF (could not be true) has to be done necessarily by elimination. § WOTF cannot be true? Plug in numbers until we find four answers that could be true. Eliminate 4 answers and odd one is the final answer.

You can easily eliminate A,B,C because they are integers. Now lets consider D vs E. Evaluate E - Consider y = 3. The median of odd number of integers MUST be integer and expression 2y/7 is not integer for y=3 Evaluate D - Consider y = 3. y/3 is integer. Hence I have to eliminate D. So in the process I eliminated 4 answer choices A through D to get E.

Pls verify the reasoning and let me know if I have missed anything.

fluke wrote:

gmat1220 wrote:

Median of 5 integers is integer and 2*5/7 is not integer. Hence it is E

Posted from my mobile device

I know that 2*y/7 is the correct answer. However, I don't understand your logic. Median of 5 integers is not an integer. What about 2 integers, 4 integers and 6 integers.

Median can be a non-integer. 1,1,2,3,4,6. y=6, Mean=3, Median=2.5

If you said, median of 2*y/7 would be a non-terminating decimal for 0<y<6 and median of any set will either be a terminating decimal or an integer, then I would have definitely agreed.

Maybe I didn't understand you fully, here. Care to explain? thanks

Thanks gmat1220. Yes, I prefer the elimination myself for these type of questions. You have properly eliminated 4 answer choices. Thus, the fifth one got to be the answer. _________________

2y/7 will always be not an integer (y<7) If y is not even - for sure no integer can be = 2y/7 (when y<7) if y is even - it means the median is the sum of the two middle terms so (A+B)/2=2y/7 therefore A+B = 4y/7. if y is an integer between 1-6, again 4y/7 is always not an integer. and we remember that A and B are integers. the sum of two integers is of course integer as well. Means - A+B can never be equal to 4y/7. Proved. _________________

2y/7 will always be not an integer (y<7) If y is not even - for sure no integer can be = 2y/7 (when y<7) if y is even - it means the median is the sum of the two middle terms so (A+B)/2=2y/7 therefore A+B = 4y/7. if y is an integer between 1-6, again 4y/7 is always not an integer. and we remember that A and B are integers. the sum of two integers is of course integer as well. Means - A+B can never be equal to 4y/7. Proved.

Hey, everyone. After a hectic orientation and a weeklong course, Managing Groups and Teams, I have finally settled into the core curriculum for Fall 1, and have thus found...

MBA Acceptance Rate by Country Most top American business schools brag about how internationally diverse they are. Although American business schools try to make sure they have students from...

For the past couple of weeks I’ve been winding down my affairs in New York by working on consulting projects, trying every exotic sandwich there is and then intensely...