A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 21 Jan 2017, 01:13

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 16 Feb 2011
Posts: 193
Schools: ABCD
Followers: 1

Kudos [?]: 173 [0], given: 78

A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls [#permalink]

### Show Tags

30 Sep 2012, 06:36
00:00

Difficulty:

15% (low)

Question Stats:

78% (01:43) correct 22% (01:09) wrong based on 121 sessions

### HideShow timer Statistics

A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

A. 1/70
B. 2/49
C. 1/21
D. 6/441
E. 1/49

[Reveal] Spoiler:
Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?
[Reveal] Spoiler: OA

Last edited by Bunuel on 01 Oct 2012, 06:22, edited 1 time in total.
Renamed the topic and edited the question.
Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 891 [3] , given: 43

Re: A jar contains 6 Magenta balls [#permalink]

### Show Tags

30 Sep 2012, 09:12
3
KUDOS
voodoochild wrote:
A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

1) 1/70
2) 2/49
3) 1/21
4) 6/441
5) 1/49

Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?

The assumption is that balls of the same color are identical.
OA answer is correct anyway. It doesn't matter that you stick both your hands in a jar and remove two balls together or get them one-by-one.
What matters is the final result: the types/colors of the two chosen balls.

If you use probabilities: first ball Tan 3/21, second ball Tan 2/20, altogether (3/21)*(2/20) = 1/70.

Combinatorics: total number of ways to choose 2 balls out of 21 is 21C2 = 21*20/2 = 21*10. Total number of ways to choose 2 Tan balls out of 3 is 3C2 = 3*2/2 = 3.
Therefore, the required probability is 3/(21*10) = 1/70.

_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 100

Kudos [?]: 891 [1] , given: 43

Re: A jar contains 6 Magenta balls [#permalink]

### Show Tags

21 Oct 2012, 14:49
1
KUDOS
voodoochild wrote:
EvaJager wrote:
voodoochild wrote:
A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

1) 1/70
2) 2/49
3) 1/21
4) 6/441
5) 1/49

Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?

The assumption is that balls of the same color are identical.
OA answer is correct anyway. It doesn't matter that you stick both your hands in a jar and remove two balls together or get them one-by-one.
What matters is the final result: the types/colors of the two chosen balls.

If you use probabilities: first ball Tan 3/21, second ball Tan 2/20, altogether (3/21)*(2/20) = 1/70.

Combinatorics: total number of ways to choose 2 balls out of 21 is 21C2 = 21*20/2 = 21*10. Total number of ways to choose 2 Tan balls out of 3 is 3C2 = 3*2/2 = 3.
Therefore, the required probability is 3/(21*10) = 1/70.

Eva,
Sorry to open this old thread. But, in this post : math-combinatorics-87345.html , the poster has mentioned that "Number of ways to pick 0 or more objects from n identical objects = n + 1" -- Hence, the number of ways to pick 2 balls out of say 5 identical balls must NOT be 5C2 -- Correct? Please help me.

thanks

The wording "Number of ways to pick 0 or more objects from n identical objects = n + 1" is not clear.
It is meant that from n identical objects, we can choose none (which is 0), 1, 2,..., or all n objects - therefore we have n+1 choices.
For example, if we have 5 identical balls, we can choose 0, 1, 2, 3, 4, or 5 balls. We have a total of 5 + 1 choices.

Once we made up our mind how many balls we want to choose, say 2, then the number of possibilities to choose them is 5C2 = 5*4/2.
Because, for the first ball 5 possibilities, for the second 4 possibilities, and then we have to divide by 2!, because the balls are identical, order doesn't matter (I would say it is meaningless, red is red, so why should I care which red I picked first?).
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Senior Manager
Joined: 10 Jul 2013
Posts: 335
Followers: 3

Kudos [?]: 312 [1] , given: 102

Re: A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls [#permalink]

### Show Tags

10 Aug 2013, 00:33
1
KUDOS
voodoochild wrote:
A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

A. 1/70
B. 2/49
C. 1/21
D. 6/441
E. 1/49

[Reveal] Spoiler:
Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?

Both balls are tan = 3/21 × 2/20 = 1/70
_________________

Asif vai.....

Manager
Joined: 16 Feb 2011
Posts: 193
Schools: ABCD
Followers: 1

Kudos [?]: 173 [0], given: 78

Re: A jar contains 6 Magenta balls [#permalink]

### Show Tags

30 Sep 2012, 10:08
a-bag-has-4-blue-3-yellow-and-2-green-balls-the-balls-of-139818.html

In this example, the number of ways of choosing any one out of 3 Yellow balls = 1+1+1+1 (no ball is chosen) instead of (3C0=1)+(3C1=3)+(3C2=3)+(3C3=1)=8 ways

Can you please explain the difference between these two questions?
Manager
Joined: 16 Feb 2011
Posts: 193
Schools: ABCD
Followers: 1

Kudos [?]: 173 [0], given: 78

Re: A jar contains 6 Magenta balls [#permalink]

### Show Tags

21 Oct 2012, 11:45
EvaJager wrote:
voodoochild wrote:
A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

1) 1/70
2) 2/49
3) 1/21
4) 6/441
5) 1/49

Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?

The assumption is that balls of the same color are identical.
OA answer is correct anyway. It doesn't matter that you stick both your hands in a jar and remove two balls together or get them one-by-one.
What matters is the final result: the types/colors of the two chosen balls.

If you use probabilities: first ball Tan 3/21, second ball Tan 2/20, altogether (3/21)*(2/20) = 1/70.

Combinatorics: total number of ways to choose 2 balls out of 21 is 21C2 = 21*20/2 = 21*10. Total number of ways to choose 2 Tan balls out of 3 is 3C2 = 3*2/2 = 3.
Therefore, the required probability is 3/(21*10) = 1/70.

Eva,
Sorry to open this old thread. But, in this post : math-combinatorics-87345.html , the poster has mentioned that "Number of ways to pick 0 or more objects from n identical objects = n + 1" -- Hence, the number of ways to pick 2 balls out of say 5 identical balls must NOT be 5C2 -- Correct? Please help me.

thanks
Intern
Status: pg
Joined: 09 Dec 2011
Posts: 16
Location: Brazil
Schools: Tuck '16 (M)
Followers: 0

Kudos [?]: 6 [0], given: 1

Re: A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls [#permalink]

### Show Tags

21 Oct 2012, 12:28
voodoochild wrote:
A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls and 7 Turquoise balls. Two balls are chosen from the jar. What is the probability that both balls chosen are Tan?

A. 1/70
B. 2/49
C. 1/21
D. 6/441
E. 1/49

[Reveal] Spoiler:
Don't we have to assume that the balls are identical? If they are, then the number of ways of choosing 2 Tan identical balls out of 3 tan balls = 1. Isn't it?
If I assume that the balls are not withdrawn "at a time", OA is correct. However, how do I know whether the balls are withdrawn at a time or one by one?

If it is not stated, we should assume without replacement,
Therefore: 3/21 x 2/20 = 1/70

Manager
Joined: 30 May 2013
Posts: 190
Location: India
Concentration: Entrepreneurship, General Management
GPA: 3.82
Followers: 0

Kudos [?]: 64 [0], given: 72

Re: A jar contains 6 Magenta balls [#permalink]

### Show Tags

09 Aug 2013, 21:26
[/quote]

Eva,
Sorry to open this old thread. But, in this post : math-combinatorics-87345.html , the poster has mentioned that "Number of ways to pick 0 or more objects from n identical objects = n + 1" -- Hence, the number of ways to pick 2 balls out of say 5 identical balls must NOT be 5C2 -- Correct? Please help me.

thanks[/quote]

The wording "Number of ways to pick 0 or more objects from n identical objects = n + 1" is not clear.
It is meant that from n identical objects, we can choose none (which is 0), 1, 2,..., or all n objects - therefore we have n+1 choices.
For example, if we have 5 identical balls, we can choose 0, 1, 2, 3, 4, or 5 balls. We have a total of 5 + 1 choices.

Once we made up our mind how many balls we want to choose, say 2, then the number of possibilities to choose them is 5C2 = 5*4/2.
Because, for the first ball 5 possibilities, for the second 4 possibilities, and then we have to divide by 2!, because the balls are identical, order doesn't matter (I would say it is meaningless, red is red, so why should I care which red I picked first?).[/quote]

Hi,

i have a small doubt in this.

This example of 5 balls and pick up 2 ball can be written as like this also right
Probablity to take first ball is : 2/5
Probablity to take second ball: 1/4
so independent event = 2/5* 1/4= 1/10
which is reciprocal of wat u got. . is this correct answer.? i am trying to understand this in probablity ways/ pleas healp me

Thanks,
Rrsnathan
MBA Section Director
Status: On vacation...
Affiliations: GMAT Club
Joined: 21 Feb 2012
Posts: 3946
Location: India
City: Pune
GMAT 1: 680 Q49 V34
GPA: 3.4
WE: Business Development (Manufacturing)
Followers: 396

Kudos [?]: 2886 [0], given: 2161

Re: A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls [#permalink]

### Show Tags

09 Aug 2013, 22:49
Probability = $$\frac{Desired Outcomes}{Total Outcomes}$$

Desired Outcomes = Number of ways of choosing 2 tan balls from 3 Tan balls = 3C2

Total Outcomes = Number of ways of choosing any 2 balls from 21 balls = 21C2

Thus Probability = $$\frac{3C2}{21C2}$$ = $$\frac{1}{70}$$
_________________
Re: A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls   [#permalink] 09 Aug 2013, 22:49
Similar topics Replies Last post
Similar
Topics:
There are 7 red balls and 5 blue balls in a jar. If 3 balls are select 7 22 Aug 2016, 18:59
A box contains 3 yellow balls and 5 black balls. One by one 2 08 Dec 2010, 18:20
37 A box contains 3 yellow balls and 5 black balls. One by one 18 09 Feb 2010, 21:00
38 A box contains 3 yellow balls and 5 black balls. One by one 24 29 Sep 2009, 00:14
2 A jar contains only x black balls and y white balls 3 06 Jun 2009, 03:54
Display posts from previous: Sort by

# A jar contains 6 Magenta balls, 3 Tan balls, 5 Gray balls

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.