Last visit was: 26 Apr 2024, 10:49 It is currently 26 Apr 2024, 10:49

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Difficulty: 605-655 Levelx   Fractions/Ratios/Decimalsx   Min/Max Problemsx                              
Show Tags
Hide Tags
User avatar
Manager
Manager
Joined: 02 Dec 2012
Posts: 172
Own Kudos [?]: 23860 [877]
Given Kudos: 23
Send PM
Most Helpful Reply
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [371]
Given Kudos: 81609
Send PM
avatar
Intern
Intern
Joined: 16 Aug 2013
Posts: 2
Own Kudos [?]: 146 [145]
Given Kudos: 3
Concentration: Marketing, Strategy
Send PM
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [53]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
5
Kudos
48
Bookmarks
Expert Reply
sunshinewhole wrote:
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.


Because e, f, and g cannot be less than the median, which is d=84 (\(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\)).

Similar questions to practice:
gmat-diagnostic-test-question-79347.html
seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html
a-set-of-25-different-integers-has-a-median-of-50-and-a-129345.html
the-median-of-the-list-of-positive-integers-above-is-129639.html
in-a-certain-set-of-five-numbers-the-median-is-128514.html
given-distinct-positive-integers-1-11-3-x-2-and-9-whic-109801.html
set-s-contains-seven-distinct-integers-the-median-of-set-s-101331.html
three-boxes-have-an-average-weight-of-7kg-and-a-median-weigh-99642.html
three-straight-metal-rods-have-an-average-arithmetic-mean-148507.html

Hope it helps.
User avatar
Manager
Manager
Joined: 12 Jan 2013
Posts: 107
Own Kudos [?]: 206 [21]
Given Kudos: 47
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
18
Kudos
3
Bookmarks
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


They're telling us that:\(L = 4S + 14\), and they want us to maximize L, thus we plug in options to solve for S such that we maximize S (this maximizes L). So our answer is the option that gives us: \(S* = \frac{(L -14)}{4}\), where * stands for the maximum value of S given the options

The answer needs to be divisible by four after subtraction with 14. The only of the options that are capable of this are B and D (104/4 = 26 and 120/4 = 30). A is obviously not a viable option since the middle value is 84.

Of course, they're asking for "LONGEST possible value" so naturally you take the option that has the highest value of the two: So our answer is D.
Tutor
Joined: 17 Jul 2019
Posts: 1304
Own Kudos [?]: 2287 [0]
Given Kudos: 66
Location: Canada
GMAT 1: 780 Q51 V45
GMAT 2: 780 Q50 V47
GMAT 3: 770 Q50 V45
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
Expert Reply
Video solution from Quant Reasoning:
Subscribe for more: https://www.youtube.com/QuantReasoning? ... irmation=1
General Discussion
Intern
Intern
Joined: 16 Apr 2009
Posts: 14
Own Kudos [?]: 57 [3]
Given Kudos: 12
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
2
Kudos
1
Bookmarks
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


Thanks Bunnel..
Could you please elaborate more about WHY "We need to maximize g. Now, to maximize g, we need to minimize all other terms." I just want to understand how does it work.
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [3]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
1
Kudos
2
Bookmarks
Expert Reply
Drik wrote:
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


Thanks Bunnel..
Could you please elaborate more about WHY "We need to maximize g. Now, to maximize g, we need to minimize all other terms." I just want to understand how does it work.


Because the question asks to find the maximum possible length of the longest piece of rope, which we denoted as g.
avatar
Intern
Intern
Joined: 25 Feb 2013
Posts: 7
Own Kudos [?]: 2 [2]
Given Kudos: 3
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
2
Kudos
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.
avatar
Intern
Intern
Joined: 11 Jan 2013
Posts: 12
Own Kudos [?]: 109 [12]
Given Kudos: 12
Location: United States
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
9
Kudos
3
Bookmarks
We can save a little bit of time by cancelling out the "7" before multiplying the mean by it:

(a+a+a+84+84+84+(14+4a))/7=68

=> (7a + 266)/7=68
=> a + 38 = 68
=> a=30
=> g=4(30)+14=134
avatar
Intern
Intern
Joined: 03 Jan 2014
Posts: 1
Own Kudos [?]: 1 [1]
Given Kudos: 21
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
1
Kudos
pls help me here! Why cant we just take all the values as 84 itself. :?
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [4]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
3
Kudos
1
Bookmarks
Expert Reply
krish1chaitu wrote:
pls help me here! Why cant we just take all the values as 84 itself. :?


We are told that the average length is 64, a median length is 84 centimeters and the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope. How can all the pieces be 84 centimeters from this?

Complete solution is here: seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html#p1159013

Also, check similar questions here: seven-pieces-of-rope-have-an-average-arithmetic-mean-lengt-144452.html#p1211023

Hope this helps.
User avatar
Intern
Intern
Joined: 22 Feb 2014
Posts: 23
Own Kudos [?]: 109 [2]
Given Kudos: 14
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
1
Kudos
1
Bookmarks
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


I tried to solve this question by this approach but I got wrong answer choice..Can you please explain why I cannot use this approach? why I am wrong here..

Mean = 1st and last term/2 (smallest x + largest y/2)
Given Mean = x+y/2 = 68
x+y = 136
now replace y= 4x+14
5x+14= 136
x= 24.5
which gives Ans choice E.....
PLS explain...
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [3]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
3
Kudos
Expert Reply
drkomal2000 wrote:
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.


I tried to solve this question by this approach but I got wrong answer choice..Can you please explain why I cannot use this approach? why I am wrong here..

Mean = 1st and last term/2 (smallest x + largest y/2)
Given Mean = x+y/2 = 68
x+y = 136
now replace y= 4x+14
5x+14= 136
x= 24.5
which gives Ans choice E.....
PLS explain...


The lengths of the pieces of the rope does not form an evenly spaced set to use (mean)=(first+last)/2.

Does this make sense?
User avatar
Senior Manager
Senior Manager
Joined: 08 Apr 2012
Posts: 259
Own Kudos [?]: 239 [1]
Given Kudos: 58
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
1
Kudos
sunshinewhole wrote:
Bunuel wrote:
Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.

It's a little confusing....
Since we have the equation \(g=4a+14\), to maximize g, we also need to maximize a... isn't this the case?
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [4]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
3
Kudos
1
Bookmarks
Expert Reply
ronr34 wrote:
sunshinewhole wrote:
Bunuel wrote:
Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



to minimize y we took 84, we cud have valued all the rope lengths to our minimum=a.

It's a little confusing....
Since we have the equation \(g=4a+14\), to maximize g, we also need to maximize a... isn't this the case?


No. Because we have fixed total length of the rope: 7*68 centimeters. If you increase a, you'd be decreasing g.
Current Student
Joined: 10 Mar 2013
Posts: 360
Own Kudos [?]: 2698 [3]
Given Kudos: 200
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.7
WE:Marketing (Telecommunications)
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
3
Kudos
For the solution we don't even need an arithmetic mean. The median has a property that (first number + last number)/2 = median (in case of odd number of values) --> we have smallest number=x and largest number = 4x + 14

(4x+14+x)/2=84 --> x ≈ 30 --> 4x+14=134 (D)
avatar
Intern
Intern
Joined: 12 Aug 2014
Posts: 11
Own Kudos [?]: 1 [0]
Given Kudos: 72
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



Im unable to understand that how minimizing all other terms would maximize value of g, can you please explain?
Math Expert
Joined: 02 Sep 2009
Posts: 92948
Own Kudos [?]: 619208 [3]
Given Kudos: 81609
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
1
Kudos
2
Bookmarks
Expert Reply
mulhinmjavid wrote:
Bunuel wrote:
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


Say the lengths of the pieces in ascending order are: a, b, c, d, e, f, g --> \(a\leq{b}\leq{c}\leq{d}\leq{e}\leq{f}\leq{g}\).

The average length = 68 centimeters --> the total length 7*68 centimeters.
The median = 84 centimeters --> d=84.
The length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece --> \(g=4a+14\).

We need to maximize g. Now, to maximize g, we need to minimize all other terms.

The minimum value of b and c is a and the minimum value of e and f is median=d.

Thus we have that \(a+a+a+84+84+84+(4a+14)=7*68\) --> \(a=30\) --> \(g_{max}=4a+14=134\).

Answer: D.



Im unable to understand that how minimizing all other terms would maximize value of g, can you please explain?



Answer this: the sum of two positive integers is 10. What is the maximum possible value of the largest of the integers?
Target Test Prep Representative
Joined: 04 Mar 2011
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Posts: 3043
Own Kudos [?]: 6277 [5]
Given Kudos: 1646
Send PM
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
4
Kudos
1
Bookmarks
Expert Reply
Walkabout wrote:
Seven pieces of rope have an average (arithmetic mean) length of 68 centimeters and a median length of 84 centimeters. If the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope, what is the maximum possible length, in centimeters, of the longest piece of rope?

(A) 82
(B) 118
(C) 120
(D) 134
(E) 152


We need to first recognize that we are working with a maximum problem. This means that of the seven pieces of rope, we must make 6 of those pieces as small as we possibly can, within the confines of the given information, and doing so will maximize the length of the 7th piece.

We are first given that seven pieces of rope have an average (arithmetic mean) length of 68 centimeters. From this we can determine the sum.

average = sum/quantity

sum = average x quantity

sum = 68 x 7 = 476

Next we are given that the median length of a piece of rope is 84 centimeters. Thus when we arrange the pieces of rope from least length to greatest, the middle length (the 4th piece) will have a length of 84 centimeters. We also must keep in mind that we can have pieces of rope of the same length. Let's first label our seven pieces of rope with variables or numbers, starting with the shortest piece and moving to the longest piece. We can let x equal the shortest piece of rope, and m equal the longest piece of rope.

piece 1: x

piece 2: x

piece 3: x

piece 4: 84

piece 5: 84

piece 6: 84

piece 7: m

Notice that the median (the 4th rope) is 84 cm long. Thus, pieces 5 and 6 are either equal to the median, or they are greater than the median. In keeping with our goal of minimizing the length of the first 6 pieces, we will assign 84 to pieces 5 and 6 to make them as short as possible. Similarly, we have assigned a length of x to pieces 1, 2, and 3.

We can plug these variables into our sum equation:

x + x + x + 84 + 84 + 84 + m = 476

3x + 252 + m = 476

3x + m = 224

We also given that the length of the longest piece of rope is 14 centimeters more than 4 times the length of the shortest piece of rope. So we can say:

m = 14 + 4x

We can now plug 14 + 4x in for m into the equation 3x + m = 224. So we have:

3x + 14 + 4x = 224

7x = 210

x = 30

Thus, the longest piece of rope is 4(30) + 14 = 134 centimeters.

Answer is D.
GMAT Club Bot
Re: Seven pieces of rope have an average (arithmetic mean) lengt [#permalink]
 1   2   
Moderators:
Math Expert
92947 posts
Senior Moderator - Masters Forum
3137 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne