GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 May 2019, 08:26 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. ### Request Expert Reply # In a certain set of five numbers the median is 200

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Intern  Joined: 13 Feb 2012
Posts: 15
WE: Other (Transportation)
In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

4
33 00:00

Difficulty:   95% (hard)

Question Stats: 45% (02:15) correct 55% (02:35) wrong based on 336 sessions

### HideShow timer Statistics

In a certain set of five numbers the median is 200. Is the range greater than 80?

(1) The average (arithmetic mean) of the numbers is 240
(2) Three of the numbers in the set are equal
##### Most Helpful Expert Reply
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

4
11
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.
_________________
##### General Discussion
Manager  Joined: 12 Dec 2012
Posts: 217
Concentration: Leadership, Marketing
GMAT 1: 540 Q36 V28 GMAT 2: 550 Q39 V27 GMAT 3: 620 Q42 V33 GPA: 2.82
WE: Human Resources (Health Care)
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

1
Bunuel wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.

why b is clearly insufficient ?
_________________
Intern  Joined: 05 Mar 2013
Posts: 42
Location: India
Concentration: Entrepreneurship, Marketing
GMAT Date: 06-05-2013
GPA: 3.2
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

1
TheNona wrote:
Bunuel wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.

why b is clearly insufficient ?

Lets say the set is a,b,200,c,d as taken by bunuel...

Now we donot know anything about the mean of the numbers.

If the numbers are 200,200,200,220,230 the range will be 30
If the numbers are 200,200,200,220,290 the range will be 40. and so onnnnnn....

So we cannot say desicively what the range is? Whether it is greater than 80 or not..So it is not sufficient
_________________
"Kudos" will help me a lot!!!!!!Please donate some!!!

Completed
Official Quant Review
OG - Quant

In Progress
Official Verbal Review
OG 13th ed
MGMAT IR
AWA Structure

Yet to do
100 700+ SC questions
MR Verbal
MR Quant

Verbal is a ghost. Cant find head and tail of it.
Verbal Forum Moderator B
Joined: 10 Oct 2012
Posts: 611
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

tom09b wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

(1) The average (arithmetic mean) of the numbers is 240
(2) Three of the numbers in the set are equal

From F.S 1, as the average is 240, we can assume that each of the 5 elements is 240 . However , as the median is 200, the two elements below the median can be at-most 200 each and the two elements above median can be at-least 200 each. Now,Range = Max(element)-Min(element). After maximizing the 2 elements below the median, we can have the following set : 200,200,200,300,300. Now,to have a value of range=80, we would have to have the value of the Max(element) = 280. Notice : 200,200,200,320,280 --> The Max(element) changes to 320 . Thus, any change on the Max(element) will ALWAYS lead to a range>80.Also, any decrease on the Min(element) will only increase the numerical value of Range above 80. Sufficient.

From F.S 2, we can have either 160,180,200,200,200 where range<80 OR 100,120,200,200,200 where range>80. Insufficient.

A.
_________________

Originally posted by mau5 on 15 May 2013, 01:33.
Last edited by mau5 on 15 May 2013, 13:08, edited 1 time in total.
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

2
TheNona wrote:
Bunuel wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.

why b is clearly insufficient ?

Because it's easy to construct the sets which give two different answers to the question:
{200, 200, 200, 201, 100000000}
{200, 200, 200, 201, 202}
_________________
Current Student D
Joined: 12 Aug 2015
Posts: 2617
Schools: Boston U '20 (M)
GRE 1: Q169 V154 Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

This is a great Question.
Excellent Solutions have been provided above.
Here is my solution to this one=>

Let the 5 numbers be in increasing order as =>

a
b
c
d
e

Now #=5

Hence median = 3rd term => c
So c= 200

Now we are asked if range is >80 or not.
Here we will calculate the minimum value of range and if the minimum value of range >80 then range will be great than 80

Statement 1=>
Mean =240

There is a very important property of mean => Sum of deviations around the mean is always zero.

Now to minimise the range => a=b=c=200

Total negative deviation occurred =120
Hence to balance out this => d and e must have a 120 positive devotion when added.
To minimise range we must minimise e
for that we she maximise d
d=e=300

Hence minimum range = 300-200=100

Hence sufficient

Statement 2-->
Three values are equal
Notice no mean is provided.
E.g=> a=e=200=> Range =0
a=200 and e=999999 => Range>80
Hence insufficient

Hence A

_________________
Manager  S
Joined: 23 Jan 2016
Posts: 181
Location: India
GPA: 3.2
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

Bunuel wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.

Bunuel, shouldnt it be minimize A and maximize D?
Current Student D
Joined: 12 Aug 2015
Posts: 2617
Schools: Boston U '20 (M)
GRE 1: Q169 V154 In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

1
OreoShake wrote:
Bunuel wrote:
In a certain set of five numbers the median is 200. Is the range greater than 80?

Say the set is {a, b, 200, c, d}. Question: is d-a>80?

(1) The average (arithmetic mean) of the numbers is 240 --> the sum of the numbers is 240*5=1,200. Now, let's see whether the range can be less than 80, so let's try to minimize the range. The range will be minimized if we maximize a and minimize d. Maximum value of a as well as b is 200 and minimum value of d is c, so our set will be: {200, 200, 200, d, d} --> 600+2d=1,200 --> d=300 --> the range=d-c=300-200=100>80. Sufficient.

(2) Three of the numbers in the set are equal. Clearly insufficient.

Answer: A.

Bunuel, shouldnt it be minimize A and maximize D?

Hi
You see, if we minimise a and maximise d => The range would be maximum.
we have to check for the minimum value of range.
E.g=>
Lets see an example with 3 numbers => a,b,c
Median = 100 => b=100
a,100,c be the three numbers in increasing order.
a=0
c=200
the range = 200

if a=100
c=100
Range =0

Hence we have to maximise a and minimise d in our original question

Regards
Stone Cold

_________________
Non-Human User Joined: 09 Sep 2013
Posts: 11002
Re: In a certain set of five numbers the median is 200  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: In a certain set of five numbers the median is 200   [#permalink] 05 Feb 2019, 05:14
Display posts from previous: Sort by

# In a certain set of five numbers the median is 200

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.

#### MBA Resources  