Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If positive integer x is divided by 5, the result is p and [#permalink]
08 Apr 2012, 02:33

3

This post received KUDOS

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

73% (02:29) correct
27% (01:08) wrong based on 123 sessions

If positive integer x is divided by 5, the result is p and the remainder 3. If x is divided by 11, the remainder is 3 again, what is the remainder when p is divided by 11?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

I had to plug in numbers, how can you solve this with the remainder formula?

If positive integer x is divided by 5, the result is p and [#permalink]
08 Apr 2012, 02:47

3

This post received KUDOS

Expert's post

BN1989 wrote:

If positive integer x is divided by 5, the result is p and the remainder 3. If x is divided by 11, the remainder is 3 again, what is the remainder when p is divided by 11?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

I had to plug in numbers, how can you solve this with the remainder formula?

If positive integer x is divided by 5, the result is p and the remainder 3: x=5p+3; If positive integer x is divided by 11, the the remainder 3: x=11q+3;

Subtract one from another: x-x=(5p+3)-(11q+3) --> 5p=11q---> \frac{p}{q}=\frac{11}{5} --> since both p and q are integers then p must be a multiple of 11, so it yields remainder of zero upon division by 11.

X=5P+3 , x can be 8 13 18 23...58 X=11Q+3, x can be 14,25,....58

To form the equation n=kx+r n=55K+58

Not sure how to proceed.

First of all you don't need to use that approach to solve the problem.

Next, you are making a mistake while deriving a general formula.

Positive integer x is divided by 5, the result is p and the remainder 3: x=5p+3 --> x can be: 3, 8, 13, ... Notice that the least value of x for which it gives the remainder of 3 upon division by 5 is 3 itself: 3 divided by 5 yields remainder of 3.

Positive integer x is divided by 11, the the remainder 3: x=11q+3 --> x can be: 3, 14, 25, ... Th same here the least value of x is 3: 3 divided by 11 yields remainder of 3.

Re: If positive integer x is divided by 5, the result is p and [#permalink]
20 Apr 2012, 09:26

Expert's post

BN1989 wrote:

If positive integer x is divided by 5, the result is p and the remainder 3. If x is divided by 11, the remainder is 3 again, what is the remainder when p is divided by 11?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

I had to plug in numbers, how can you solve this with the remainder formula?

If the remainder is same in both the cases, x = 5p + 3 x = 11q + 3

Re: If positive integer x is divided by 5, the result is p and [#permalink]
27 Nov 2012, 03:35

ENAFEX wrote:

Bunuel, I tried using this method below as described in

I got stuck. Please help

X=5P+3 , x can be 8 13 18 23...58 X=11Q+3, x can be 14,25,....58

To form the equation n=kx+r n=55K+58

Not sure how to proceed.

Using the same approach, we know that at p=11 the value of X=58, for both the expressions. Hence p is a multiple of 11 so the remainder is 0. Though this is still a more time consuming approach that the ones stated above.

Re: If positive integer x is divided by 5, the result is p and [#permalink]
07 Mar 2013, 09:23

Hi I have a quick question on this problem. How are you getting to 55 in the combined equation? Why can't X be 3? If you divide 3 by both 5 and 11, the remainder is 3 so I'm not sure what I am missing. Thanks for any help you can give.

Re: If positive integer x is divided by 5, the result is p and [#permalink]
07 Mar 2013, 20:02

Expert's post

aryah422 wrote:

Hi I have a quick question on this problem. How are you getting to 55 in the combined equation? Why can't X be 3? If you divide 3 by both 5 and 11, the remainder is 3 so I'm not sure what I am missing. Thanks for any help you can give.

I have discussed the general case there.

Given that: x = 5p + 3 x = 11q + 3

We can say that x = 55a + 3 i.e. when we divide x by 55 (the LCM of 5 and 11), the remainder will be 3 in that case too. To understand this fully, check out the link I gave in my previous post: http://www.veritasprep.com/blog/2011/05 ... emainders/

Sure, the number x can be 3 too. In that case p = 0, q = 0 and a = 0. When you divide p by 11, the remainder will be 0. _________________

Re: If positive integer x is divided by 5, the result is p and [#permalink]
31 Jul 2014, 01:15

BN1989 wrote:

If positive integer x is divided by 5, the result is p and the remainder 3. If x is divided by 11, the remainder is 3 again, what is the remainder when p is divided by 11?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

I had to plug in numbers, how can you solve this with the remainder formula?

When we got 5p = 11k, since 5 and 11 is prime number -> k must be divisible by 5 and p must be divisible by 11 -> A is correct _________________

......................................................................... +1 Kudos please, if you like my post

gmatclubot

Re: If positive integer x is divided by 5, the result is p and
[#permalink]
31 Jul 2014, 01:15

Hey everyone, today’s post focuses on the interview process. As I get ready for interviews at Kellogg and Tuck (and TheEngineerMBA ramps up for his HBS... ...

I got invited to interview at Sloan! The date is October 31st. So, with my Kellogg interview scheduled for this Wednesday morning, and my MIT Sloan interview scheduled...

Not all good communicators are leaders, but all leaders are good communicators. Communication is an essential tool that leaders need to use in order to get anything done. Almost...

Despite being a long weekend with Thanksgiving, this week was very tiring for me in various ways. Besides the pressure of learning materials I am not familiar with such...