Bunuel
To elaborate more.
Suppose we are told that:
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 2 after division by 8. What is the remainder that n leaves after division by 12?
The statement "positive integer n leaves a remainder of 4 after division by 6" can be expressed as: \(n=6p+4\). Thus according to this particular statement \(n\) could take the following values: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, ...
The statement "positive integer n leaves a remainder of 2 after division by 8" can be expressed as: \(n=8q+2\). Thus according to this particular statement \(n\) could take the following values: 2, 10, 18, 26, 34, 42, 50, 58, 66, ...
The above two statements are both true, which means that the only valid values of \(n\) are the values which are common in both patterns. For example \(n\) can not be 16 (from first pattern) as the second formula does not give us 16 for any value of integer \(q\).
So we should derive general formula (based on both statements) that will give us only valid values of \(n\).
How can these two statement be expressed in one formula of a type \(n=kx+r\)? Where \(x\) is divisor and \(r\) is a remainder.
Divisor \(x\) would be the least common multiple of above two divisors 6 and 8, hence \(x=24\).
Remainder \(r\) would be the first common integer in above two patterns, hence \(r=10\).
Therefore general formula based on both statements is \(n=24k+10\). Thus according to this general formula valid values of \(n\) are: 10, 34, 58, ...
Now, \(n\) divided by 12 will give us the reminder of 10 (as 24k is divisible by 12).
Hope it helps.
Hi Bunuel,
All of this makes sense but I would like to challenge the last statement highlighted above.
In this case, we can obviously write n=12(2k)+10 as you highlighted in the later posts. If for some reason, let's say it asked for a number that wasn't divisible by 24, wouldn't that make the equation n=24k+10 invalid? Meaning, it asked what is the remainder that n leaves after division by 11?
Additionally, what if it asked "what is the remainder that n leaves after division by 48. Could we still apply the same logic and say 10?
Thanks!