bhatiavai
Hi,
Probably a silly question....
But can some one explain why Remainder r would be the first common integer in the two patterns
n=6p+4
n=5q+3
Many Thanks
N is of the form 6p+4 which means it is one of 4, 10, 16, 22, 28, ...
N is also of the form 5q+3 which means it must also be one of 3, 8, 13, 18, 23, 28, ...
Since N must be a value in both the lists, N can take the values common to both. The first such value is 28.
So N can be 28.
Now what other values can N take? 28 is a number that will leave a remainder of 4 when divided by 6 and a remainder of 3 when divided by 5. The next such number will be (LCM of 6 and 5) + 28. Why? because whatever you add to 28, that should be divisible by 6 as well as 5. Then whatever you add will have no relevance to the remainder and the remainders will remain the same.
That is why some other values of N will be 30+28, 60+28 ...etc.
After you divide any of these numbers by 30, the remainder will be 28.
Positive integer n leaves a remainder of 4 after division by 6 and a remainder of 3 after division by 5. If n is greater than 30, what is the remainder that n leaves after division by 30?