Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If x(2x + 1) = 0 and (x + 1/2)(2x - 3) = 0, then x = [#permalink]
13 Apr 2014, 08:03

Bunuel wrote:

Walkabout wrote:

If x(2x + 1) = 0 and (x + 1/2)(2x - 3) = 0, then x =

(A) -3 (B) -1/2 (C) 0 (D) 1/2 (E) 3/2

x(2x + 1) = 0 --> x=0 OR x=-1/2; (x + 1/2)(2x - 3) = 0 --> x=-1/2 OR x=3/2.

x=-1/2 satisfies both equations.

Answer: B.

This makes complete sense, although, I ran into trouble when I tried to FOIL the second equation and ended up with x^2-x-3/4=0 and from that point forward, I was completely stumped. Why is that method wrong?

I notice that I get confused on that front quite a bit - FOIL'ing vs. just setting both parenthesis to 0?

EDIT: As I was doing other problems, I ran into DS 67, Pg 180 of OG 13. The equation there is n(n+1) = 6, if I use the same methodology outlined above, the two solutions I get are n=6 and n=5. That is obviously wrong and I should've opted to FOIL in the above case. Hence my confusion -- why is it that in some situations I need to FOIL and in some other situations, I need to just equate the left to the right side WITHOUT foiling?

Re: If x(2x + 1) = 0 and (x + 1/2)(2x - 3) = 0, then x = [#permalink]
19 May 2014, 19:43

russ9 wrote:

Bunuel wrote:

x(2x + 1) = 0 --> x=0 OR x=-1/2; (x + 1/2)(2x - 3) = 0 --> x=-1/2 OR x=3/2.

x=-1/2 satisfies both equations.

Answer: B.

This makes complete sense, although, I ran into trouble when I tried to FOIL the second equation and ended up with x^2-x-3/4=0 and from that point forward, I was completely stumped. Why is that method wrong?

I notice that I get confused on that front quite a bit - FOIL'ing vs. just setting both parenthesis to 0?

EDIT: As I was doing other problems, I ran into DS 67, Pg 180 of OG 13. The equation there is n(n+1) = 6, if I use the same methodology outlined above, the two solutions I get are n=6 and n=5. That is obviously wrong and I should've opted to FOIL in the above case. Hence my confusion -- why is it that in some situations I need to FOIL and in some other situations, I need to just equate the left to the right side WITHOUT foiling?

Hi Bunuel,

Still a little confused about the above question. I ran into countless more errors over the past few days -- cause was the same reason mentioned above. Would greatly appreciate some clarification.

Re: If x(2x + 1) = 0 and (x + 1/2)(2x - 3) = 0, then x = [#permalink]
19 May 2014, 23:41

1

This post received KUDOS

Expert's post

russ9 wrote:

russ9 wrote:

Bunuel wrote:

x(2x + 1) = 0 --> x=0 OR x=-1/2; (x + 1/2)(2x - 3) = 0 --> x=-1/2 OR x=3/2.

x=-1/2 satisfies both equations.

Answer: B.

This makes complete sense, although, I ran into trouble when I tried to FOIL the second equation and ended up with x^2-x-3/4=0 and from that point forward, I was completely stumped. Why is that method wrong?

I notice that I get confused on that front quite a bit - FOIL'ing vs. just setting both parenthesis to 0?

EDIT: As I was doing other problems, I ran into DS 67, Pg 180 of OG 13. The equation there is n(n+1) = 6, if I use the same methodology outlined above, the two solutions I get are n=6 and n=5. That is obviously wrong and I should've opted to FOIL in the above case. Hence my confusion -- why is it that in some situations I need to FOIL and in some other situations, I need to just equate the left to the right side WITHOUT foiling?

Hi Bunuel,

Still a little confused about the above question. I ran into countless more errors over the past few days -- cause was the same reason mentioned above. Would greatly appreciate some clarification.

Thanks!

When you have that the product of several multiples is equal to zero, then you don't need to expand the product. You can directly get the answer by equating these multiples to 0.

For example: \((x - 3)(x + 2) = 0\) --> \(x - 3 = 0\) or \(x + 2 =0\) --> \(x = 3\) or \(x = -2\). Now, you could expand and get \(x^2-x-6 = 0\) and then solve with conventional method (check the links below) but the first approach is faster.

As for \(n(n+1) = 6\). Don't know how you are getting the roots for this as 5 and 6, but for this question you cannot equate the multiples (n and n+1) to zero to get the roots because the product is not zero, it's 6. To solve it, you should expand to get: \(n^2+n-6=0\) and then either solve by formula (check the links above) or by factoring to \((n+3)(n-2)=0\) and only then using the first approach: \(n + 3 = 0\) or \(n - 2 =0\) --> \(n = -3\) or \(n = 2\).

I am not panicking. Nope, Not at all. But I am beginning to wonder what I was thinking when I decided to work full-time and plan my cross-continent relocation...

Over the last week my Facebook wall has been flooded with most positive, almost euphoric emotions: “End of a fantastic school year”, “What a life-changing year it’s been”, “My...