Find all School-related info fast with the new School-Specific MBA Forum

It is currently 19 Apr 2014, 21:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If d is a positive integer and f is the product of the first

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
Joined: 09 Sep 2005
Posts: 21
Followers: 0

Kudos [?]: 0 [0], given: 0

If d is a positive integer and f is the product of the first [#permalink] New post 10 Sep 2005, 11:58
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

47% (01:56) correct 52% (01:08) wrong based on 99 sessions
If d is a positive integer and f is the product of the first 30 positive integers, what is the value of d?

(1) 10^d is a factor of f
(2) d>6 Not Sufficient.

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-d-is-a-positive-integer-and-f-is-the-product-of-the-first-126692.html
[Reveal] Spoiler: OA
Kaplan Promo CodeKnewton GMAT Discount CodesGMAT Pill GMAT Discount Codes
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17321
Followers: 2875

Kudos [?]: 18404 [4] , given: 2350

GMAT Tests User CAT Tests
Re: Number Properties from GMATPrep [#permalink] New post 05 Oct 2009, 04:58
4
This post received
KUDOS
Expert's post
DenisSh wrote:
Bunuel wrote:
2. Finding the number of powers of a prime number k, in the n!.
What is the power of 3 in 35!...


In the same way as for 5? i.e., 35/3 + 35/9 + 35/27 = 11 + 3 + 1 = 15.

Am I right?


Absolutely, here is the way to calculate the number of powers of a prime number k, in n!.
The formula is:
\frac{n}{k}+\frac{n}{k^2}+\frac{n}{k^3} ... till n>k^x

What is the power of 2 in 25!
\frac{25}{2}+\frac{25}{4}+\frac{25}{8}+\frac{25}{16}=12+6+3+1=22

There is another formula finding powers of non prime in n!, but think it's not needed for GMAT.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests


Last edited by bb on 21 Oct 2009, 12:14, edited 3 times in total.
formulas
3 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17321
Followers: 2875

Kudos [?]: 18404 [3] , given: 2350

GMAT Tests User CAT Tests
Re: GMATPrep DS Product of first 30 integers [#permalink] New post 30 Nov 2009, 21:54
3
This post received
KUDOS
Expert's post
If d is a positive integer and f is the product of the first 30 positive integers, what is the value of d?

(1) 10^d is a factor of f --> k*10^d=30!.

First we should find out how many zeros 30! has, it's called trailing zeros. It can be determined by the power of 5 in the number 30! --> \frac{30}{5}+\frac{30}{25}=6+1=7 --> 30! has 7 zeros.

k*10^d=n*10^7, (where n is the product of other multiples of 30!) --> it tells us only that max possible value of d is 7. Not sufficient.

(2) d>6 Not Sufficient.

(1)+(2) d>6, d_{max}=7 --> d=7.

Answer: C.

For trailing zeros see the link about factorials below.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17321
Followers: 2875

Kudos [?]: 18404 [2] , given: 2350

GMAT Tests User CAT Tests
Re: Number Properties from GMATPrep [#permalink] New post 05 Oct 2009, 04:02
2
This post received
KUDOS
Expert's post
If you are aiming for 700+ in GMAT you should know 2 important things about factorials:

1. Trailing zeros:
Trailing zeros are a sequence of 0s in the decimal representation (or more generally, in any positional representation) of a number, after which no other digits follow.

125000 has 3 trailing zeros;

The number of trailing zeros in the decimal representation of n!, the factorial of a non-negative integer n, can be determined with this formula:

\frac{n}{5}+\frac{n}{5^2}+\frac{n}{5^3}+...+\frac{n}{5^k}, where k must be chosen such that 5^(k+1)>n

It's more simple if you look at an example:

How many zeros are in the end (after which no other digits follow) of 32!?
\frac{32}{5}+\frac{32}{5^2}=6+1=7 (denominator must be less than 32, 5^2=25 is less)

So there are 7 zeros in the end of 32!

The formula actually counts the number of factors 5 in n!, but since there are at least as many factors 2, this is equivalent to the number of factors 10, each of which gives one more trailing zero.

2. Finding the number of powers of a prime number k, in the n!.

What is the power of 3 in 35!

Tell me if you need this one too.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

1 KUDOS received
Manager
Manager
Joined: 14 Jul 2005
Posts: 105
Location: Sofia, Bulgaria
Followers: 1

Kudos [?]: 2 [1] , given: 0

 [#permalink] New post 10 Sep 2005, 14:13
1
This post received
KUDOS
Statement 1 tells us that we need to find out how many times is 30! divisible by 10. The hardest way to solve this is to break down 30! to its prime factors and count the 2s and 5s, because they make up the 10s. It is pretty easy to see that there are many more 2s than 5s in 30!, because we have 15 even numbers and only 6 numbers divisible by 5.

The numbers that contain 5s are 5=5, 2*5=10, 3*5=15, 4*5=20, 5*5=25, 6*5=30. So we have a total of seven 5s and more than seven 2s, which means that 30! can be evenly divided by 10 up to seven times. Therefore 1 <= d <=7. We can't figure out the exact value, so the statement is insufficient.

Statement 2 tells us that d > 6, which is a worthless piece of information on its own.

When we combine the 2 statements, we get C.

There was a very nice discussion of a similar problem about a month ago, but I can't find the post. The approach is "stolen" from there.
1 KUDOS received
Director
Director
User avatar
Joined: 16 May 2007
Posts: 550
Followers: 3

Kudos [?]: 12 [1] , given: 0

GMAT Tests User
DS : product of first 30 positive integers [#permalink] New post 09 Aug 2007, 18:39
1
This post received
KUDOS
If d is a positive integer and f is the product if the first 30 positive integers, what is the value of d?

1. 10^d is a factor of f.
2. d>6
1 KUDOS received
VP
VP
Joined: 10 Jun 2007
Posts: 1469
Followers: 5

Kudos [?]: 86 [1] , given: 0

GMAT Tests User
Re: DS : product of first 30 positive integers [#permalink] New post 09 Aug 2007, 20:26
1
This post received
KUDOS
trahul4 wrote:
If d is a positive integer and f is the product if the first 30 positive integers, what is the value of d?

1. 10^d is a factor of f.
2. d>6


C.

Given: f=30!
(1) 10^d is a factor of f
Plug in d=1, 10 is a factor of f, Yes!
d=2, 100 is a factor of f, Yes! because 25*4 = 100
INSUFFICIENT.

(2) d>6. INSUFFICIENT

Together, plug in d=7, Is 10^7 is a factor of f?
5*2 = 10
10 = 10
15*12 = 180 = 18*10
20 = 2*10
25*4= 10*10
30 = 3*10
I don't think there is any more, SUFFICIENT.
1 KUDOS received
Manager
Manager
Joined: 10 Jul 2009
Posts: 172
Followers: 1

Kudos [?]: 24 [1] , given: 8

GMAT Tests User
Re: properties of intigers [#permalink] New post 10 Aug 2009, 10:21
1
This post received
KUDOS
f = 30!

1) 10^d is a factor of f
so we have to find the powers of 10 in the 30!
number of powers of 10 is equal to the number of 2 and 5
multiples of 5 less than or equal to 30 are 5,10, 15, 20, 25, 30.
So number of powers of 5 in 30! = 7
As we have many multiple is 2, the maximum value of d is 7
(i.e. d can be 1 or 2 or 3 or 4 ...)
2) d>6.
d can take any value.
Clubbing 1 and 2 we get,
d = 7
So answer is C
1 KUDOS received
Manager
Manager
Joined: 08 Oct 2009
Posts: 67
Followers: 1

Kudos [?]: 14 [1] , given: 5

Re: Number Properties from GMATPrep [#permalink] New post 19 Oct 2009, 14:51
1
This post received
KUDOS
Great stuff Bunuel !!
1 KUDOS received
Manager
Manager
Joined: 24 Jun 2009
Posts: 61
Followers: 1

Kudos [?]: 6 [1] , given: 2

GMATPrep DS Product of first 30 integers [#permalink] New post 30 Nov 2009, 17:44
1
This post received
KUDOS
Image
1 KUDOS received
Senior Manager
Senior Manager
User avatar
Affiliations: PMP
Joined: 13 Oct 2009
Posts: 314
Followers: 2

Kudos [?]: 91 [1] , given: 37

GMAT Tests User
Re: GMATPrep DS Product of first 30 integers [#permalink] New post 30 Nov 2009, 19:07
1
This post received
KUDOS
I think the answer is C.

S1 by itself is not sufficient, coz if d=1 means 10 is a factor of 30!, true, if d =2, 100 is also a factor of 30!, d can be 1,2 or more... so insuff
S2 by itself is not sufficient, coz d>6 means d can be 7,8,9 or anything - clearly insuff

combining the two however we can asnwer the question, because in 30! we have 7 powers of 10 as below:

1.2.3.4.5 has one power for 10 (2*5)
6.7.8.9.10 has one power for 10 (10)
11.12.13.14.15 has one power for 10 (15*14 or 15*12)
16.17.18.19.20 has one power for 10 (20)
21.22.23.24.25 has 2 powers for 10 (25*24)
26.27.28.29.30 has one power for 10 (30)
total of 7 so 10^7 is the highest 10^d being fact of 30! hence d=7
_________________

Thanks, Sri
-------------------------------
keep uppp...ing the tempo...

Press +1 Kudos, if you think my post gave u a tiny tip

1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17321
Followers: 2875

Kudos [?]: 18404 [1] , given: 2350

GMAT Tests User CAT Tests
Re: DS : product of first 30 positive integers [#permalink] New post 11 Aug 2010, 15:26
1
This post received
KUDOS
Expert's post
masland wrote:
Is there anyway to quickly determine if d>7 is not a factor of 30! ?


If d is a positive integer and f is the product of the first 30 positive integers, what is the value of d?

(1) 10^d is a factor of f --> k*10^d=30!.

First we should find out how many zeros 30! has, it's called trailing zeros. It can be determined by the power of 5 in the number 30! --> \frac{30}{5}+\frac{30}{25}=6+1=7 --> 30! has 7 zeros.

k*10^d=n*10^7, (where n is the product of other multiples of 30!) --> it tells us only that max possible value of d is 7. Not sufficient.

Side notes: 30! is some huge number with 7 trailing zeros (ending with 7 zeros). Statement (1) says that 10^d is factor of this number, but 10^d can be 10 (d=1) or 100 (d=2) ... or 10,000,000 (d=7). Basically d can be any integer from 1 to 7, inclusive (if d>7 then 10^d won't be a factor of 30! as 30! has only 7 zeros in the end). So we can not determine single numerical value of d from this statement. Hence this statement is not sufficient.

(2) d>6 Not Sufficient.

(1)+(2) d>6, d_{max}=7 --> d=7.

Answer: C.

For trailing zeros see the link about factorials in my signature.

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17321
Followers: 2875

Kudos [?]: 18404 [1] , given: 2350

GMAT Tests User CAT Tests
Re: DS : product of first 30 positive integers [#permalink] New post 13 Aug 2010, 01:53
1
This post received
KUDOS
Expert's post
estreet wrote:
It can be determined by the power of 5 in the number 30! --> \frac{30}{5}+\frac{30}{25}=6+1=7 --> 30! has 7 zeros.

I don't understand the calculations that were performed here. How did you get to \frac{30}{5}+\frac{30}{25}=6+1=7? How did you know that the 5 was the factor needed? Thanks



For trailing zeros see the link about factorials: everything-about-factorials-on-the-gmat-85592.html
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Intern
Intern
Joined: 09 Sep 2005
Posts: 21
Followers: 0

Kudos [?]: 0 [0], given: 0

 [#permalink] New post 10 Sep 2005, 15:27
WELL DONE ... BRILLIANT ... BRAVO

Many thanks :lol:
Manager
Manager
Joined: 06 Aug 2005
Posts: 198
Followers: 3

Kudos [?]: 5 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Sep 2005, 21:04
The maximum value of d = int(d/5) + int (d/(5^2)) + ....

d = int(30/5) + int(30/25) + ... = 6 + 1 + 0 = 7
VP
VP
User avatar
Joined: 13 Jun 2004
Posts: 1128
Location: London, UK
Schools: Tuck'08
Followers: 6

Kudos [?]: 19 [0], given: 0

GMAT Tests User
 [#permalink] New post 10 Sep 2005, 21:44
this problem is great, I was totally lost and I would have gone for E
very nice answer Vasild, I am gonna study this later :wink:
Intern
Intern
Joined: 11 Sep 2005
Posts: 14
Followers: 0

Kudos [?]: 0 [0], given: 0

 [#permalink] New post 15 Sep 2005, 13:18
vasild wrote:
Statement 1 tells us that we need to find out how many times is 30! divisible by 10. The hardest way to solve this is to break down 30! to its prime factors and count the 2s and 5s, because they make up the 10s. It is pretty easy to see that there are many more 2s than 5s in 30!, because we have 15 even numbers and only 6 numbers divisible by 5.

The numbers that contain 5s are 5=5, 2*5=10, 3*5=15, 4*5=20, 5*5=25, 6*5=30. So we have a total of seven 5s and more than seven 2s, which means that 30! can be evenly divided by 10 up to seven times. Therefore 1 <= d <=7. We can't figure out the exact value, so the statement is insufficient.

Statement 2 tells us that d > 6, which is a worthless piece of information on its own.

When we combine the 2 statements, we get C.

There was a very nice discussion of a similar problem about a month ago, but I can't find the post. The approach is "stolen" from there.


i didnt get how we get "total of seven 5s"..i am able to see only six 5's.
Intern
Intern
Joined: 11 Sep 2005
Posts: 14
Followers: 0

Kudos [?]: 0 [0], given: 0

 [#permalink] New post 15 Sep 2005, 13:20
davesh wrote:
vasild wrote:
Statement 1 tells us that we need to find out how many times is 30! divisible by 10. The hardest way to solve this is to break down 30! to its prime factors and count the 2s and 5s, because they make up the 10s. It is pretty easy to see that there are many more 2s than 5s in 30!, because we have 15 even numbers and only 6 numbers divisible by 5.

The numbers that contain 5s are 5=5, 2*5=10, 3*5=15, 4*5=20, 5*5=25, 6*5=30. So we have a total of seven 5s and more than seven 2s, which means that 30! can be evenly divided by 10 up to seven times. Therefore 1 <= d <=7. We can't figure out the exact value, so the statement is insufficient.

Statement 2 tells us that d > 6, which is a worthless piece of information on its own.

When we combine the 2 statements, we get C.

There was a very nice discussion of a similar problem about a month ago, but I can't find the post. The approach is "stolen" from there.


i didnt get how we get "total of seven 5s"..i am able to see only six 5's.


My apologies..i got ur funda..
Manager
Manager
Joined: 26 Jun 2006
Posts: 155
Followers: 1

Kudos [?]: 0 [0], given: 0

GMATPrep DS: 10^d [#permalink] New post 19 Aug 2006, 09:15
Stumbled on this one. Anyone knows how to do it?

If d is a positive integer and F is the product of the first 30 positive integers, what is the value of d?

(1) 10^d is a factor of F

(2) d>6


Thanks!
Intern
Intern
Joined: 26 Apr 2005
Posts: 19
Followers: 0

Kudos [?]: 0 [0], given: 0

GMAT Tests User
 [#permalink] New post 19 Aug 2006, 09:35
I think it is C
F = 1*2*3...*30
From A we know 10^d * X = F means..
and F contains for 7 instances of (5*2)
as in... 1*2*3*4...10 has two (5*2 and 10)
11 to 20 has (15 and 20)(meaning another 5 and 2*10 makes 2)
21 to 30 has a 25 and 30 (5 * 5 = 25 and 3 *10...for makes 3 instances of 10)
so d could be from 1 to 7...
from statement 2 u get that d > 6

Thus combining both u get the exact vlue of d...
Hence C
  [#permalink] 19 Aug 2006, 09:35
    Similar topics Author Replies Last post
Similar
Topics:
New posts If d is a positive integer and f is the product of the first coffeeloverfreak 5 22 Sep 2005, 20:54
New posts If d is a positive factor and f is the product of the first ffgmat 7 15 May 2006, 07:03
Popular new posts If d is a positive integer and f is the product of the first TOUGH GUY 11 31 Jan 2007, 05:20
New posts Experts publish their posts in the topic If D is a positive number and F is the product of the first netcaesar 1 25 Jan 2008, 10:41
New posts 10 Experts publish their posts in the topic If d is a positive integer and f is the product of the first enigma123 7 28 Jan 2012, 17:13
Display posts from previous: Sort by

If d is a positive integer and f is the product of the first

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2   3   4    Next  [ 70 posts ] 



cron

GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.