Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In a certain business, production index p is directly [#permalink]
06 May 2008, 23:49

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

25% (medium)

Question Stats:

63% (02:03) correct
37% (01:11) wrong based on 308 sessions

In a certain business, production index p is directly proportional to efficiency index e, which is in turn directly proportional to investment i. What is p if i = 70?

(1) e = 0.5 whenever i = 60 (2) p = 2.0 whenever i = 50

Re: OG - proportional index [#permalink]
07 May 2008, 00:31

we need P when i is some value...

we know p is dependent on e and e is dependent on i

In a certain business, production index p is directly proportional to efficiency index e, which is in turn directly proportional to investment i. What is p if i = 70?

1) e = 0.5 whenever i = 60 -> does not give the value or relation between e and P thus insufficient 2) p = 2.0 whenever i = 50 -> gives the relation between p and i thus we can find p when i=70

Re: OG - proportional index [#permalink]
28 Nov 2010, 18:50

Would p be directly proportional to i as well if e is proportional to p? I am thinking it should be, however the constant proportion will be different between p and e and e and i and thus entirely separate between p and i? thanks.

Re: OG - proportional index [#permalink]
29 Nov 2010, 00:45

6

This post received KUDOS

Expert's post

gettinit wrote:

Would p be directly proportional to i as well if e is proportional to p? I am thinking it should be, however the constant proportion will be different between p and e and e and i and thus entirely separate between p and i? thanks.

a is directly proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets bigger too, so there is some non-zero constant x such that a=xb;

So if a is directly proportional to b (a=xb), then vise-versa is also correct: b is directly proportional to a (b=\frac{1}{x}*a as the absolute value of a gets bigger, the absolute value of b gets bigger too).

a is inversely proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets smaller, so there is some non-zero constant constant y such that a=\frac{y}{b}.

So if a is inversely proportional to b (a=\frac{y}{b}), then vise-versa is also correct: b is inversely proportional to a (b=\frac{y}{a} as the absolute value of a gets bigger, the absolute value of b gets smaller).

As for the question: In a certain business, production index p is directly proportional to efficiency index e, which is in turn directly proportional to investment i. What is p if i = 70?

Given: p=ex and e=iy (for some constants x and y), so p=ixy. Question: p=70xy=? So, basically we should find the value of xy.

(1) e = 0.5 whenever i = 60 --> as e=iy then 0.5=60y --> we can find the value of y, but still not sufficient. (2) p = 2.0 whenever i = 50 --> as p=ixy then 2=50xy --> we can find the value of xy. Sufficient.

Re: OG - proportional index [#permalink]
29 Nov 2010, 05:41

1

This post received KUDOS

Expert's post

gettinit wrote:

Would p be directly proportional to i as well if e is proportional to p? I am thinking it should be, however the constant proportion will be different between p and e and e and i and thus entirely separate between p and i? thanks.

production index p is directly proportional to efficiency index e, implies p = ke (k is the constant of proportionality) e is in turn directly proportional to investment i implies e = mi (m is the constant of proportionality. Note here that I haven't taken the constant of proportionality as k here since the constant above and this constant could be different)

Then, p = kmi (km is the constant of proportionality here. It doesn't matter that we depict it using two variables. It is still just a number)

e.g. if p = 2e and e = 3i p = 6i will be the relation. 6 being the constant of proportionality.

So if you have i and need p, you either need this constant directly (as you can find from statement 2) or you need both k and m (statement 1 only gives you m). _________________

Re: In a certain business, production index p is directly [#permalink]
16 May 2013, 08:17

If P id directly proportional to E then what is the relation between them?

Is it only P = E * x

Or can it also be P = E*x + y.

In both the cases P is directly proportional to E. As in the question the author doesn't mention anything about the values of the variables when either of them is zero, it leads to a confusing situation.

Please Clarify _________________

"Kudos" will help me a lot!!!!!!Please donate some!!!

Completed Official Quant Review OG - Quant

In Progress Official Verbal Review OG 13th ed MGMAT IR AWA Structure

Yet to do 100 700+ SC questions MR Verbal MR Quant

Re: In a certain business, production index p is directly [#permalink]
17 May 2013, 08:02

Expert's post

SrinathVangala wrote:

If P id directly proportional to E then what is the relation between them?

Is it only P = E * x

Or can it also be P = E*x + y.

In both the cases P is directly proportional to E. As in the question the author doesn't mention anything about the values of the variables when either of them is zero, it leads to a confusing situation.

Please Clarify

It is P = E*k only. It cannot be P = E*k + m

Directly proportional means that if one doubles, other doubles too. If one becomes half, other becomes half too. It doesn't happen in case you add a constant.

P = 2E + 1 If E = 5, P = 11 If E = 10, P = 21 _________________

Re: OG - proportional index [#permalink]
25 May 2014, 07:49

Bunuel wrote:

gettinit wrote:

Would p be directly proportional to i as well if e is proportional to p? I am thinking it should be, however the constant proportion will be different between p and e and e and i and thus entirely separate between p and i? thanks.

a is directly proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets bigger too, so there is some non-zero constant x such that a=xb;

So if a is directly proportional to b (a=xb), then vise-versa is also correct: b is directly proportional to a (b=\frac{1}{x}*a as the absolute value of a gets bigger, the absolute value of b gets bigger too).

a is inversely proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets smaller, so there is some non-zero constant constant y such that a=\frac{y}{b}.

So if a is inversely proportional to b (a=\frac{y}{b}), then vise-versa is also correct: b is inversely proportional to a (b=\frac{y}{a} as the absolute value of a gets bigger, the absolute value of b gets smaller).

As for the question: In a certain business, production index p is directly proportional to efficiency index e, which is in turn directly proportional to investment i. What is p if i = 70?

Given: p=ex and e=iy (for some constants x and y), so p=ixy. Question: p=70xy=? So, basically we should find the value of xy.

(1) e = 0.5 whenever i = 60 --> as e=iy then 0.5=60y --> we can find the value of y, but still not sufficient. (2) p = 2.0 whenever i = 50 --> as p=ixy then 2=50xy --> we can find the value of xy. Sufficient.

Answer: B.

Hope it's clear.

Hi Bunuel,

When you break it down like that, it makes complete sense but I made the following error. Can you please clarify why this isn't true?

\frac{p}{e} = \frac{e}{i}

\frac{p}{.5} = \frac{.5}{60} and solve for p. If the ratios are proportional, shouldn't .5/60 give me a relationship for p/e since I already know E? This led me to choose "D" as the answer choice.

Re: OG - proportional index [#permalink]
25 May 2014, 09:56

Expert's post

russ9 wrote:

Bunuel wrote:

gettinit wrote:

Would p be directly proportional to i as well if e is proportional to p? I am thinking it should be, however the constant proportion will be different between p and e and e and i and thus entirely separate between p and i? thanks.

a is directly proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets bigger too, so there is some non-zero constant x such that a=xb;

So if a is directly proportional to b (a=xb), then vise-versa is also correct: b is directly proportional to a (b=\frac{1}{x}*a as the absolute value of a gets bigger, the absolute value of b gets bigger too).

a is inversely proportional to b means that as the absolute value of b gets bigger, the absolute value of a gets smaller, so there is some non-zero constant constant y such that a=\frac{y}{b}.

So if a is inversely proportional to b (a=\frac{y}{b}), then vise-versa is also correct: b is inversely proportional to a (b=\frac{y}{a} as the absolute value of a gets bigger, the absolute value of b gets smaller).

As for the question: In a certain business, production index p is directly proportional to efficiency index e, which is in turn directly proportional to investment i. What is p if i = 70?

Given: p=ex and e=iy (for some constants x and y), so p=ixy. Question: p=70xy=? So, basically we should find the value of xy.

(1) e = 0.5 whenever i = 60 --> as e=iy then 0.5=60y --> we can find the value of y, but still not sufficient. (2) p = 2.0 whenever i = 50 --> as p=ixy then 2=50xy --> we can find the value of xy. Sufficient.

Answer: B.

Hope it's clear.

Hi Bunuel,

When you break it down like that, it makes complete sense but I made the following error. Can you please clarify why this isn't true?

\frac{p}{e} = \frac{e}{i}

\frac{p}{.5} = \frac{.5}{60} and solve for p. If the ratios are proportional, shouldn't .5/60 give me a relationship for p/e since I already know E? This led me to choose "D" as the answer choice.

Thanks

Directly proportional means that as one amount increases, another amount increases at the same rate.

We are told that p is directly proportional to e and e is directly proportional to i. But it does NOT mean that the rate of increase, constant of proportionality, (x in my solution) for p and e is the same as the rate of increase, constant of proportionality, (y in my solution) for e and i.

Or simply put, we have that \frac{p}{e}=x and \frac{e}{i}=y but we cannot say whether x=y, so we cannot say whether \frac{p}{e}=\frac{e}{i}.