It is currently 20 Nov 2017, 14:48

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

What is the sum of all solutions to the equation |x² – 4x + 4| =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Top Contributor
SVP
SVP
User avatar
G
Joined: 12 Sep 2015
Posts: 1847

Kudos [?]: 2609 [0], given: 362

Location: Canada
What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 07 Nov 2016, 05:57
Expert's post
Top Contributor
9
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  85% (hard)

Question Stats:

55% (02:06) correct 45% (02:02) wrong based on 277 sessions

HideShow timer Statistics

What is the sum of all solutions to the equation |x² – 4x + 4| = x² + 10x – 24?

A) -5
B) -3
C) -2
D) 2
E) 5

*Kudos for all correct solutions
[Reveal] Spoiler: OA

_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Kudos [?]: 2609 [0], given: 362

6 KUDOS received
Intern
Intern
avatar
B
Joined: 06 May 2014
Posts: 2

Kudos [?]: 7 [6], given: 58

Concentration: Strategy, Marketing
GMAT 1: 550 Q35 V49
GPA: 3.25
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 07 Nov 2016, 09:44
6
This post received
KUDOS
1
This post was
BOOKMARKED
Assuming |x² – 4x + 4| negative:
-(x² – 4x + 4) = x² + 10x – 24
=>-x²+4x-4=x²+10x-24
=>2x²+6x=20
=>x²+3x=10
=>x²+5x-10=0
=>(x+5)(x-2)=0
we have either x=-5 or x=2
Assuming |x² – 4x + 4| positive:
x² – 4x + 4=x² + 10x – 24
=>10x+4x=24+4
=>14x=28
=>x=2
Since both solutions have x=2 in common, the answer will be D.
Although I got it wrong first time.
Awaiting my first Kudos in the forum.

Kudos [?]: 7 [6], given: 58

1 KUDOS received
Senior Manager
Senior Manager
User avatar
G
Status: Preparing for GMAT
Joined: 25 Nov 2015
Posts: 333

Kudos [?]: 108 [1], given: 323

Location: India
GPA: 3.64
GMAT ToolKit User Premium Member Reviews Badge
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 07 Nov 2016, 11:37
1
This post received
KUDOS
Ashiquzzaman wrote:
Assuming |x² – 4x + 4| negative:
-(x² – 4x + 4) = x² + 10x – 24
=>-x²+4x-4=x²+10x-24
=>2x²+6x=20
=>x²+3x=10
=>x²+5x-10=0
=>(x+5)(x-2)=0
we have either x=-5 or x=2
Assuming |x² – 4x + 4| positive:
x² – 4x + 4=x² + 10x – 24
=>10x+4x=24+4
=>14x=28
=>x=2
Since both solutions have x=2 in common, the answer will be D.
Although I got it wrong first time.
Awaiting my first Kudos in the forum.


Can u please explain how the answer is 2.
I couldn't understand the highlighted part in your solution.
IMO we have to add all the solutions.
_________________

Please give kudos, if you like my post

When the going gets tough, the tough gets going...

Kudos [?]: 108 [1], given: 323

1 KUDOS received
Intern
Intern
avatar
Joined: 18 Sep 2016
Posts: 49

Kudos [?]: 14 [1], given: 97

Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 07 Nov 2016, 13:20
1
This post received
KUDOS
3
This post was
BOOKMARKED
Ashiquzzaman wrote:
Assuming |x² – 4x + 4| negative:
-(x² – 4x + 4) = x² + 10x – 24
=>-x²+4x-4=x²+10x-24
=>2x²+6x=20
=>x²+3x=10
=>x²+5x-10=0
=>(x+5)(x-2)=0
we have either x=-5 or x=2
Assuming |x² – 4x + 4| positive:
x² – 4x + 4=x² + 10x – 24
=>10x+4x=24+4
=>14x=28
=>x=2
Since both solutions have x=2 in common, the answer will be D. WRONG
Although I got it wrong first time.
Awaiting my first Kudos in the forum.




your calculations are good; but your answer is right for the wrong reason.

after you find the solutions of the equation assuming that the absolute value is negative ,and then positive, youhave to check whether those solutions are make the value inside the absolute value of the sign you assumed.

Assuming |x² – 4x + 4| positive:
x² – 4x + 4=x² + 10x – 24
=>10x+4x=24+4
=>14x=28
=>x=2

now sobstituting x=2 in |x² – 4x + 4| we find that the expression is positive ==> the solution is valid

Assuming |x² – 4x + 4| negative:
-(x² – 4x + 4) = x² + 10x – 24
=>-x²+4x-4=x²+10x-24
=>2x²+6x=20
=>x²+3x=10
=>x²+5x-10=0
=>(x+5)(x-2)=0
we have either x=-5 or x=2

now sobstituting x=-5 and x=2 in |x² – 4x + 4| we find that the expression is positive in both the cases ==> the solution are NOT valid as we assumed that the espression was negative to find these solutions.

Thus, the only valid solution was the first one x=2

answer D
_________________

Please press Kudos if you like my post

Kudos [?]: 14 [1], given: 97

Expert Post
Top Contributor
1 KUDOS received
SVP
SVP
User avatar
G
Joined: 12 Sep 2015
Posts: 1847

Kudos [?]: 2609 [1], given: 362

Location: Canada
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 07 Nov 2016, 16:25
1
This post received
KUDOS
Expert's post
Top Contributor
3
This post was
BOOKMARKED
GMATPrepNow wrote:
What is the sum of all solutions to the equation |x² – 4x + 4| = x² + 10x – 24?

A) -5
B) -3
C) -2
D) 2
E) 5


When solving equations involving ABSOLUTE VALUE, there are 3 steps:
1. Apply the rule that says: If |x| = k, then x = k and/or x = -k
2. Solve the resulting equations
3. Plug solutions into original equation to check for extraneous roots

So, we have two equations to solve: x² – 4x + 4 = x² + 10x – 24 and x² – 4x + 4 = -(x² + 10x – 24)

x² – 4x + 4 = x² + 10x – 24
Subtract x² from both sides: –4x + 4 = 10x – 24
Rearrange: 28 = 14x
Solve: x = 2

x² – 4x + 4 = -(x² + 10x – 24)
Simplify right side: x² – 4x + 4 = -x² - 10x + 24
Add x² to both sides: 2x² – 4x + 4 = -10x + 24
Add 10x to both sides: 2x² + 6x + 4 = 24
Subtract 24 from both sides: 2x² + 6x - 20 = 0
Factor: 2(x² + 3x - 10) = 0
Factor again: 2(x - 2)(x + 5) = 0
Solve: x = 2 and x = -5

So, we have two solutions to consider: x = 2 and x = -5
Plug solutions into original equation to check for extraneous roots

x = 2
|2² – 4(2) + 4| = 2² + 10(2) – 24
Evaluate: |0| = 0
This works, so keep this solution

x = -5
|(-5)² – 4(-5) + 4| = (-5)² + 10(-5) – 24
Evaluate: |49| = -49
Doesn't work. So, x = -5 is NOT a solution

Since there's only one valid solution (x = 2), the sum of all solutions is 2.
Answer:
[Reveal] Spoiler:
D


RELATED VIDEO

_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Kudos [?]: 2609 [1], given: 362

1 KUDOS received
VP
VP
avatar
P
Joined: 26 Mar 2013
Posts: 1284

Kudos [?]: 296 [1], given: 165

Reviews Badge CAT Tests
What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 02:06
1
This post received
KUDOS
GMATPrepNow wrote:
What is the sum of all solutions to the equation |x² – 4x + 4| = x² + 10x – 24?

A) -5
B) -3
C) -2
D) 2
E) 5

*Kudos for all correct solutions


|x² – 4x + 4| = x² + 10x – 24

Open modulus

x² – 4x + 4 = x² + 10x – 24..........14X-28=0 ......x-2=0 then x=2

x² – 4x + 4 = -(x² + 10x – 24)......x² – 4x + 4 = -x² - 10x + 24.........2x²+6x-20=0.....x²+3x-10=0

(x+5)(x-2)=0

x=2 or x =-5

When checking back in the original equation, we find:

X=2 is valid. it gives zero in both sides.

X=-5 is NOT valid as LHS MUST be positive while put x=-5 gives Negative value. NO need to check the RHS.

Answer: D

Brent,

When I tried to apply critical point, it does not work well. I know the critical point is when x=2 but could not move from there.

Can you help please?

Kudos [?]: 296 [1], given: 165

Expert Post
Top Contributor
SVP
SVP
User avatar
G
Joined: 12 Sep 2015
Posts: 1847

Kudos [?]: 2609 [0], given: 362

Location: Canada
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 06:45
Expert's post
Top Contributor
Mo2men wrote:
GMATPrepNow wrote:
What is the sum of all solutions to the equation |x² – 4x + 4| = x² + 10x – 24?

A) -5
B) -3
C) -2
D) 2
E) 5

*Kudos for all correct solutions


|x² – 4x + 4| = x² + 10x – 24

Open modulus

x² – 4x + 4 = x² + 10x – 24..........14X-28=0 ......x-2=0 then x=2

x² – 4x + 4 = -(x² + 10x – 24)......x² – 4x + 4 = -x² - 10x + 24.........2x²+6x-20=0.....x²+3x-10=0

(x+5)(x-2)=0

x=2 or x =-5

When checking back in the original equation, we find:

X=2 is valid. it gives zero in both sides.

X=-5 is NOT valid as LHS MUST be positive while put x=-5 gives Negative value. NO need to check the RHS.

Answer: D

Brent,

When I tried to apply critical point, it does not work well. I know the critical point is when x=2 but could not move from there.

Can you help please?



In your solution you found that x = 2 is the only solution, so you're done.
Can you elaborate what you mean by "I know the critical point is when x=2 but could not move from there. "?
I'm not sure where you're having troubles.

Cheers,
Brent
_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Kudos [?]: 2609 [0], given: 362

2 KUDOS received
Senior CR Moderator
User avatar
D
Status: Long way to go!
Joined: 10 Oct 2016
Posts: 1244

Kudos [?]: 1009 [2], given: 60

Location: Viet Nam
GMAT ToolKit User Premium Member CAT Tests
What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 09:07
2
This post received
KUDOS
No need to solve for both 2 cases positive and negative.

Just have \(x^2 - 4x + 4 = (x-2)^2 ≥ 0\)

So \(|x² – 4x + 4| = x² – 4x + 4\)

Since \(x² – 4x + 4 = x² + 10x – 24\) we have \(14x - 28 = 0\), now \(x = 2\)
_________________

Actual LSAT CR bank by Broall

How to solve quadratic equations - Factor quadratic equations
Factor table with sign: The useful tool to solve polynomial inequalities
Applying AM-GM inequality into finding extreme/absolute value

New Error Log with Timer


Last edited by broall on 08 Nov 2016, 09:18, edited 1 time in total.

Kudos [?]: 1009 [2], given: 60

VP
VP
avatar
P
Joined: 26 Mar 2013
Posts: 1284

Kudos [?]: 296 [0], given: 165

Reviews Badge CAT Tests
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 09:08
GMATPrepNow wrote:


In your solution you found that x = 2 is the only solution, so you're done.
Can you elaborate what you mean by "I know the critical point is when x=2 but could not move from there. "?
I'm not sure where you're having troubles.

Cheers,
Brent



Hi Brent,

I will try to explain my steps.

|x² – 4x + 4| = x² + 10x – 24

The critical point is x=2 that makes the modulus equal to zeros.

X>=2 .......... x² – 4x + 4 = x² + 10x – 24.........then x=2

X<2 .............x² – 4x + 4 = x² + 10x – 24......... then x=2 or x=-5. However, when I put x=0 , it does not turn the term to negative, actually if I put x= negative number, it always positive because it is raise to power of 2 as it is (x-2)^2.

so I do not know. should I discard situation X<2???

I hope you can help

Kudos [?]: 296 [0], given: 165

Expert Post
Top Contributor
SVP
SVP
User avatar
G
Joined: 12 Sep 2015
Posts: 1847

Kudos [?]: 2609 [0], given: 362

Location: Canada
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 12:20
Expert's post
Top Contributor
Mo2men wrote:
GMATPrepNow wrote:


In your solution you found that x = 2 is the only solution, so you're done.
Can you elaborate what you mean by "I know the critical point is when x=2 but could not move from there. "?
I'm not sure where you're having troubles.

Cheers,
Brent



Hi Brent,

I will try to explain my steps.

|x² – 4x + 4| = x² + 10x – 24

The critical point is x=2 that makes the modulus equal to zeros.

X>=2 .......... x² – 4x + 4 = x² + 10x – 24.........then x=2

X<2 .............x² – 4x + 4 = x² + 10x – 24......... then x=2 or x=-5. However, when I put x=0 , it does not turn the term to negative, actually if I put x= negative number, it always positive because it is raise to power of 2 as it is (x-2)^2.

so I do not know. should I discard situation X<2???

I hope you can help


You are solving a different kind of question when you focus solely on |x² – 4x + 4| (and ignore the right side of that equation)
It just happens to turn out that x = 2 is an x-value that makes x² + 10x – 24 = 0, but that's purely coincidental (which is unfortunate, since it may have led you to believe that you were on the right track).
Please review the solutions posted above. They model the steps that need to be taken for this kind of question.

Cheers,
Brent
_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Kudos [?]: 2609 [0], given: 362

VP
VP
avatar
P
Joined: 26 Mar 2013
Posts: 1284

Kudos [?]: 296 [0], given: 165

Reviews Badge CAT Tests
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 08 Nov 2016, 12:35
GMATPrepNow wrote:
Mo2men wrote:
GMATPrepNow wrote:


In your solution you found that x = 2 is the only solution, so you're done.
Can you elaborate what you mean by "I know the critical point is when x=2 but could not move from there. "?
I'm not sure where you're having troubles.

Cheers,
Brent



Hi Brent,

I will try to explain my steps.

|x² – 4x + 4| = x² + 10x – 24

The critical point is x=2 that makes the modulus equal to zeros.

X>=2 .......... x² – 4x + 4 = x² + 10x – 24.........then x=2

X<2 .............x² – 4x + 4 = x² + 10x – 24......... then x=2 or x=-5. However, when I put x=0 , it does not turn the term to negative, actually if I put x= negative number, it always positive because it is raise to power of 2 as it is (x-2)^2.

so I do not know. should I discard situation X<2???

I hope you can help


You are solving a different kind of question when you focus solely on |x² – 4x + 4| (and ignore the right side of that equation)
It just happens to turn out that x = 2 is an x-value that makes x² + 10x – 24 = 0, but that's purely coincidental (which is unfortunate, since it may have led you to believe that you were on the right track).
Please review the solutions posted above. They model the steps that need to be taken for this kind of question.

Cheers,
Brent


I apologize but I do not understand what step should I review. How i ignored the right side?

Kudos [?]: 296 [0], given: 165

1 KUDOS received
Intern
Intern
avatar
Joined: 23 Oct 2016
Posts: 34

Kudos [?]: 5 [1], given: 17

Premium Member
 [#permalink]

Show Tags

New post 09 Nov 2016, 07:19
1
This post received
KUDOS
GMATPrepNow wrote:
What is the sum of all solutions to the equation |x² – 4x + 4| = x² + 10x – 24?

A) -5
B) -3
C) -2
D) 2
E) 5

*Kudos for all correct solutions

There is absolutely no need to solve for 2 cases.

The trick here is that the value in the absolute is always positive, since x^2 -4x + 4 = (x-2)^2, which is always a positive value, thus we can simply remove the absolute and solve for x, we get x=2.

Kudos [?]: 5 [1], given: 17

Intern
Intern
avatar
Joined: 12 Feb 2016
Posts: 8

Kudos [?]: 1 [0], given: 0

Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 09 Nov 2016, 08:09
I found the correct answer using a different method and I would like to know whether it is or not.

from the equation: |x² – 4x + 4| = x² + 10x – 24 => \(|(x-2)^2| = x² + 10x – 24\) => the argument of the modulus is always \(>= 0\) => I can eliminate the absolute value => x² – 4x + 4 = x² + 10x – 24 => solve for x => x= +2 => there are no other roots to this equation thus the sum of all solutions must be equal to 2

Kudos [?]: 1 [0], given: 0

Intern
Intern
avatar
B
Joined: 20 Jun 2017
Posts: 8

Kudos [?]: 0 [0], given: 102

Premium Member CAT Tests
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 29 Oct 2017, 11:26
Sir but here they have asked the sum of all the equations. How can we conclude the ans is 3. The ans should be -5+2=-3.Kindly help me.

Kudos [?]: 0 [0], given: 102

Expert Post
Top Contributor
SVP
SVP
User avatar
G
Joined: 12 Sep 2015
Posts: 1847

Kudos [?]: 2609 [0], given: 362

Location: Canada
Re: What is the sum of all solutions to the equation |x² – 4x + 4| = [#permalink]

Show Tags

New post 30 Oct 2017, 08:20
Expert's post
Top Contributor
Raj94* wrote:
Sir but here they have asked the sum of all the equations. How can we conclude the ans is 3. The ans should be -5+2=-3.Kindly help me.


We have two POSSIBLE solutions to consider: x = 2 and x = -5
However, when it comes to absolute value equations, we must plug solutions into original equation to check for extraneous roots
When we do this, we see that x = -5 is NOT a solution

Here's why:
Plug in x = -5
we get: |(-5)² – 4(-5) + 4| = (-5)² + 10(-5) – 24
Simplify: |25 – (-20) + 4| = 25 + (-50) – 24
Evaluate: |49| = -49
As we can see, |49| does NOT equal -49
So, x = -5 is NOT a valid solution.

If we check the other solution (x = 2) we see that this is, indeed, a solution.

Since x = 2 is the ONLY valid solution, the sum is 2 (answer choice D)
_________________

Brent Hanneson – Founder of gmatprepnow.com

Image

Kudos [?]: 2609 [0], given: 362

Re: What is the sum of all solutions to the equation |x² – 4x + 4| =   [#permalink] 30 Oct 2017, 08:20
Display posts from previous: Sort by

What is the sum of all solutions to the equation |x² – 4x + 4| =

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.