Walkabout wrote:
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0.82, and 5.096 are three terminating decimals. If r and s are positive integers and the ratio r/s is expressed as a decimal, is r/s a terminating decimal?
(1) 90 < r < 100
(2) s = 4
\(r,s\,\, \geqslant 1\,\,\,{\text{ints}}\)
\(\frac{r}{s}\,\,\,\mathop = \limits^? \,\,\,\,{\text{terminating}}\)
\(\left( 1 \right)\,\,90 < r < 100\,\,\,\,\left\{ \begin{gathered}\\
\,\left( {r,s} \right) = \left( {95,5} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\left( {\frac{{95}}{5} = \operatorname{int} } \right) \hfill \\\\
\,\left( {r,s} \right) = \left( {91,3} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\left( {\frac{{91}}{3} = 30\frac{1}{3} = 30.333 \ldots } \right) \hfill \\ \\
\end{gathered} \right.\)
\(\left( 2 \right)\,\,s = 4\)
\(\left( * \right)\,\,\,\,{\text{r/s}}\,\,\,{\text{division}}\,\,{\text{algorithm}}:\,\,\,\left\{ \begin{gathered}\\
\,r = qs + R\,\,\,\mathop = \limits^{s\, = \,4} \,\,\,4q + R \hfill \\\\
\,q\,\,\operatorname{int} \,\,\,,\,\,\,\,0\,\,\, \leqslant \,\,\,R\,\,\operatorname{int} \,\,\, \leqslant \,\,3\,\,\,\,\left( { = s - 1} \right) \hfill \\ \\
\end{gathered} \right.\)
\(\frac{r}{s}\,\,\,\,\mathop = \limits^{\,\left( * \right)} \,\,\,\,\frac{{4q + R}}{4} = q + \frac{R}{4}\,\, = \,\,\operatorname{int} \,\, + \,\,\frac{R}{4}\,\,\,\,\,\,\,\)
\(\frac{R}{4} = \,\,\,\left\{ {\begin{array}{*{20}{c}}\\
{\,\,\frac{0}{4}} \\ \\
{\,\,\frac{1}{4}} \\ \\
{\,\,\frac{2}{4}} \\ \\
{\,\,\frac{3}{4}} \\
\end{array}} \right.\begin{array}{*{20}{c}}\\
{\,\,{\text{if}}\,\,\,R = 0\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} } \right)} \\ \\
{\,\,{\text{if}}\,\,\,R = 1\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.25} \right)} \\ \\
{\,\,{\text{if}}\,\,\,R = 2\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.5} \right)} \\ \\
{\,\,{\text{if}}\,\,\,R = 3\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.75} \right)} \\
\end{array}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)