Last visit was: 10 Jul 2025, 13:43 It is currently 10 Jul 2025, 13:43
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
TomB
Joined: 18 Sep 2009
Last visit: 05 Jul 2013
Posts: 194
Own Kudos:
2,989
 [128]
Given Kudos: 2
Posts: 194
Kudos: 2,989
 [128]
6
Kudos
Add Kudos
122
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,624
Own Kudos:
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,624
Kudos: 740,169
 [70]
34
Kudos
Add Kudos
36
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,624
Own Kudos:
740,169
 [8]
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,624
Kudos: 740,169
 [8]
6
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
General Discussion
User avatar
rajman41
Joined: 16 Feb 2012
Last visit: 01 Mar 2013
Posts: 20
Own Kudos:
GPA: 3.57
Posts: 20
Kudos: 352
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Bunuel,
Why is -4*1, -4*2 not considered?? You are only taking 1*-3, -3*2 only consecutive terms? Would you please clearify it?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,624
Own Kudos:
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,624
Kudos: 740,169
Kudos
Add Kudos
Bookmarks
Bookmark this Post
rajman41
Hi Bunuel,
Why is -4*1, -4*2 not considered?? You are only taking 1*-3, -3*2 only consecutive terms? Would you please clearify it?

Because 1 and -4 are NOT consecutive terms in the sequence.
User avatar
ziko
Joined: 28 Feb 2012
Last visit: 29 Jan 2014
Posts: 91
Own Kudos:
Given Kudos: 17
Concentration: Strategy, International Business
GPA: 3.9
WE:Marketing (Other)
Posts: 91
Kudos: 206
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
TomB
For a finite sequence of non zero numbers, the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6 ?
A. 1
B. 2
C. 3
D. 4
E. 5

this problem is already posted in the forum. My doubt is every body multiplying the negative number with positive number to find the variations. but the question asked for "number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative." for ex:1,-3 are not consecutive . please explain

You are probably mixing consecutive terms in a sequence and consecutive integers: 1 and -3 are not consecutive integers, but they are consecutive terms in the sequence given. See complete solution below.

For a finite sequence of non zero numbers, the number of variations in the sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6?
A. 1
B. 2
C. 3
D. 4
E. 5

Given sequence: {1, -3, 2, 5, -4, -6}

The questions basically asks: how many pairs of consecutive terms are there in the sequence such that the product of these consecutive terms is negative.

1*(-3)=-3=negative;
-3*2=-6=negative;
2*5=10=positive;
5*(-4)=-20=negative;
(-4)*(-6)=24=positive.

So there are 3 pairs of consecutive terms of the sequence for which the product is negative.

Answer: C.

Hope it's clear.

I have answered correctly, but my pairs were: (2, -3) (-4,5) (5,-6). My question is, Bunuel, why do we consider (1-3) as pair while (5;-6) not?
Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,624
Own Kudos:
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,624
Kudos: 740,169
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ziko
Bunuel
TomB
For a finite sequence of non zero numbers, the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6 ?
A. 1
B. 2
C. 3
D. 4
E. 5

this problem is already posted in the forum. My doubt is every body multiplying the negative number with positive number to find the variations. but the question asked for "number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative." for ex:1,-3 are not consecutive . please explain

You are probably mixing consecutive terms in a sequence and consecutive integers: 1 and -3 are not consecutive integers, but they are consecutive terms in the sequence given. See complete solution below.

For a finite sequence of non zero numbers, the number of variations in the sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6?
A. 1
B. 2
C. 3
D. 4
E. 5

Given sequence: {1, -3, 2, 5, -4, -6}

The questions basically asks: how many pairs of consecutive terms are there in the sequence such that the product of these consecutive terms is negative.

1*(-3)=-3=negative;
-3*2=-6=negative;
2*5=10=positive;
5*(-4)=-20=negative;
(-4)*(-6)=24=positive.

So there are 3 pairs of consecutive terms of the sequence for which the product is negative.

Answer: C.

Hope it's clear.

I have answered correctly, but my pairs were: (2, -3) (-4,5) (5,-6). My question is, Bunuel, why do we consider (1-3) as pair while (5;-6) not?
Thanks.

Please read the question and the thread carefully. This question is answered here: for-a-finite-sequence-of-non-zero-numbers-the-number-of-127949.html#p1107497

Again, we are told that "the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence ..." 1 and -3 are consecutive terms in the sequence while 5 and -6 are not.
User avatar
ziko
Joined: 28 Feb 2012
Last visit: 29 Jan 2014
Posts: 91
Own Kudos:
Given Kudos: 17
Concentration: Strategy, International Business
GPA: 3.9
WE:Marketing (Other)
Posts: 91
Kudos: 206
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you Bunuel, i got it, i did not realised that 1, -3, 2, 5, -4, -6 is a given finite sequence, for some reason i understood it as a set. Although now i see that if it were a set then the answer would be 0, since there are no pair with negative signs in a normal consequtive sequence.
avatar
fozzzy
Joined: 29 Nov 2012
Last visit: 17 May 2015
Posts: 574
Own Kudos:
Given Kudos: 543
Posts: 574
Kudos: 6,624
Kudos
Add Kudos
Bookmarks
Bookmark this Post
So the only thing different about this question is that people might re-arrange the sequence and that's what you are not supposed to do?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 10 July 2025
Posts: 102,624
Own Kudos:
740,169
 [2]
Given Kudos: 98,170
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,624
Kudos: 740,169
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fozzzy
So the only thing different about this question is that people might re-arrange the sequence and that's what you are not supposed to do?

People might do a lot of things. The point is to read the stem carefully.
User avatar
Skag55
Joined: 26 Feb 2013
Last visit: 01 Aug 2014
Posts: 122
Own Kudos:
Given Kudos: 25
Posts: 122
Kudos: 189
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
fozzzy
So the only thing different about this question is that people might re-arrange the sequence and that's what you are not supposed to do?

People might do a lot of things. The point is to read the stem carefully.

Ok it took me like 5 reads to understand what the question is about. I understood Bunuel's explanation (straight forward) but didn't get that GMAT declared a fancy way of saying the product of each pair of integers... I wonder how many of these does it take to drop you off your seat! :evil:
avatar
ron2718
Joined: 05 Apr 2015
Last visit: 07 Apr 2015
Posts: 3
Own Kudos:
Posts: 3
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
The more natural understanding of the number of variations in sign is the number of times a term in the sequence has the opposite sign of its previous term. Because when the sign changes and a term and its preceding term have opposite signs, their product is necessarily negative, so the definition given is functionally equivalent. Understanding that helped me confirm that I understood what was meant by "number of variations in sign."

Keys to this problem: (1) Have in the front of your mind that the product of a positive and negative number is negative, whereas the product of two numbers of the same sign is positive, and (2) understand what number sequences are.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
12,488
 [1]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,488
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi kop,

The GMAT Quant section usually includes at least one "symbolism" question that will either "make up" a math symbol and ask you to perform a calculation with it OR make up a math phrase/concept and ask you to use the concept to answer a question.

These questions are essentially about following instructions.

Here, we're asked to take the PRODUCT of TWO CONSECUTIVE terms. If the product is NEGATIVE, then we have a "variation." So, given the included sequence of numbers, how many "variations" are there? Thankfully the work isn't difficult, but you would need to work through every pair of consecutive terms (and you would find 3 "variations").

These types of questions can sometimes take a little time to solve, but are some of the easiest "math" questions on the exam.

GMAT assassins aren't born, they're made,
Rich
avatar
Dreams25
Joined: 12 Aug 2015
Last visit: 15 Nov 2015
Posts: 4
Own Kudos:
Posts: 4
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
It seems to me that the answer is written explicitly in the question since the question says "the number of variations in sign is defined as the number of paires etc now what does it mean the number of variations? Isn't that the 3 negative signs attached the to the number?
I don't quiet get what they mean the number of variations in sign
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
12,488
 [2]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,488
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi Dreams25,

The GMAT Quant section usually includes at least one "symbolism" question that will either "make up" a math symbol and ask you to perform a calculation with it OR make up a math phrase/concept and ask you to use the concept to answer a question.

These questions are essentially about following instructions.

Here, we're asked to take the PRODUCT of TWO CONSECUTIVE terms. If the product is NEGATIVE, then we have a "variation." So, given the included sequence of numbers, how many "variations" are there? Thankfully the work isn't difficult....

1, -3, 2, 5, -4, -6

(1)(-3) = -3 this is a negative produce, so we have 1 'variation'
(-3)(2) = -6 another 'variation'
(2)(5) = 10 NOT a variation (since the product is positive)
(5)(-4) = -20 another 'variation'
(-4)(-6) = 24 NOT a variation

Total variations = 3

Final Answer:
These types of questions can sometimes take a little time to solve, but they are some of the easiest "math" questions on the exam.

GMAT assassins aren't born, they're made,
Rich
avatar
Dreams25
Joined: 12 Aug 2015
Last visit: 15 Nov 2015
Posts: 4
Own Kudos:
Posts: 4
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you for your response, but I still don't get why do you call 1•-3= -3 a variation. It's a variation compared to what? I can maybe understand a variation in sign when u take 2 negative numbers and multiply them u get a positive but here the negative -3 was negative already before the multiplication so what is the change that we refer as a variation?
Thanks.
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,788
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,788
Kudos: 12,488
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi Dreams25,

In this prompt, we have to follow the specific instructions that we were given:

"...the number of VARIATIONS in the sign is defined as the NUMBER of PAIRS of CONSECUTIVE terms of the sequence for which the PRODUCT of the two consecutive terms is NEGATIVE."

This defines what a 'variation' is (in this question); you just have to focus on this instruction, and apply it to the given sequence of numbers, to get the correct answer.

GMAT assassins aren't born, they're made,
Rich
avatar
BaruchGMAT
Joined: 16 Dec 2015
Last visit: 24 May 2016
Posts: 1
Own Kudos:
1
 [1]
Given Kudos: 18
Posts: 1
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
(1) Tabulating the problem to see it more clearly.

For a finite sequence of non zero numbers,
the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative.

What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6 ?


(2) Converting to a more compact version.

For a finite sequence of non zero numbers,
V = number of pairs of consecutive terms in {1, -3, 2, 5, -4, -6} when product of the two consecutive terms is negative.

What is V=?

The effort is spent in figuring out what V is. Do not get confused with consecutive terms and consecutive integers. Clearly the author of the problem wants you to confuse the concept of consecutive integers and terms, however, resist the temptation.

In Set S = {a, b, c}, the terms a and b are consecutive terms, as well as b and c. However, a and c are not consecutive terms.

As such, consecutive terms for {1, -3, 2, 5, -4, -6} are:
{1, -3, 2, 5, -4, -6} = 1* -3 = -3 (negative)
{1, -3, 2, 5, -4, -6} = -3 * 2 = -6 (negative)
{1, -3, 2, 5, -4, -6} = 2* 5 = 10 (positive)
{1, -3, 2, 5, -4, -6} = 5 * -4 = -20 (negative)
{1, -3, 2, 5, -4, -6} = -4 * -6 = 24 (positive)

Note that you do not even need to multiply the numbers, however, you need to realize what happens when you multiply a negative times a positive or vice versa.

As a result of the analysis above, you can conclude that you would have three (3) negative pairs.
User avatar
KrishnakumarKA1
Joined: 05 Jan 2017
Last visit: 13 Oct 2020
Posts: 403
Own Kudos:
302
 [1]
Given Kudos: 15
Location: India
Posts: 403
Kudos: 302
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
TomB
For a finite sequence of non zero numbers, the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6 ?

A. 1
B. 2
C. 3
D. 4
E. 5
1, -3, 2, 5, -4, -6

1*-3 = -1
-3*2 = -6
2*5 = 10
5*-4 = -20
-4*-6 = 24

3 negative terms . Variation is 3
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 10 July 2025
Posts: 21,070
Own Kudos:
26,129
 [1]
Given Kudos: 296
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,070
Kudos: 26,129
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
TomB
For a finite sequence of non zero numbers, the number of variations in sign is defined as the number of pairs of consecutive terms of the sequence for which the product of the two consecutive terms is negative. What is the number of variations in sign for the sequence 1, -3, 2, 5, -4, -6 ?

A. 1
B. 2
C. 3
D. 4
E. 5


We are given the following sequence of numbers: 1, -3, 2, 5, -4, -6.

Every time a pair of consecutive terms product a negative product we have a “variation in sign”. We must determine how many variations in sign are in the sequence.

1 x (-3) = -3, so this is a variation in sign

(-3) x 2 = -6, so this is a variation in sign

5 x (-4) = -20, so this is a variation in sign

Thus, there is a total of 3 variations in sign.

Answer: C
 1   2   
Moderators:
Math Expert
102624 posts
PS Forum Moderator
685 posts