GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 12 Dec 2019, 17:02 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # How To Solve: Statistics

Author Message
TAGS:

### Hide Tags

GMAT Tutor G
Status: Tutor - BrushMyQuant
Joined: 05 Apr 2011
Posts: 622
Location: India
Concentration: Finance, Marketing
Schools: XLRI (A)
GMAT 1: 700 Q51 V31 GPA: 3
WE: Information Technology (Computer Software)

### Show Tags

8
18
How to Solve: Statistics

Hi All,

I have learned a lot from gmatclub and am done with my gmat too. So, i have decided to contribute back.
As part of this i have decided to share the knowledge i have regarding various topics related to gmat quant.
Hope it will be useful. This post is about how to solve "Statistics"

Theory

Mean (Arithmetic Mean) is the average of the all the numbers in the set.
Mean = (Sum of all the numbers in the set) / total number of numbers in the set

Suppose the set is {1,2,3,4,5}
Then, Mean = (1+2+3+4+5)/5 = 15 / 5 = 3

1. If all the numbers in the set are increased/decreased by the same number(k) then the mean also gets increased/decreased by the same number(k)

Suppose the set is {a,b,c,d,e}
then the Mean = (a+b+c+d+e)/5
Now, lets increase all the numbers by k. So, the new set is {a+k,b+k,c+k,d+k,e+k)
New Mean = (a+k +b+k +c+k +d+k + e+k)/5
= (a+b+c+d+e + 5k)/5 = ((a+b+c+d+e)/5 ) + k = Old Mean + k

2. If all the numbers in the set are multiplied/divided by the same number(k) then the mean also gets multiplied/divided by the same number(k)
Proof same as above. In this case if we multiple all the numbers by k then
New Mean = k* (Old Mean)

SUGGESTION: Don't try remembering the points 1 and 2 above. It does not take much time to calculate them!

Median is the middle value of the set.
In case of even number of numbers in the set: Median is the mean of the two middle numbers (after the numbers are arranged in the increasing / decreasing order)
Example: If the set is {5,1,4,6,3,2} then we will arrange the set as {1,2,3,4,5,6} and median will be mean of middle two terms. Middle two terms in this case are 3 and 4 so Median = (3+4)/2 = 3.5

In case of odd number of numbers in the set: Median is the middle number (after the numbers are arranged in increasing/ decreasing order )
Example: If the set is {4,5,3,1,2} then we will arrange the set as {1,2,3,4,5} and the median will be the middle number which is 3

1. If all the numbers in the set are increased/decreased by the same number(k) then the median also gets increased/decreased by the same number(k)
Proof same as for mean.

2. If all the numbers in the set are multiplied/divided by the same number(k) then the median also gets multiplied/divided by the same number(k)
Proof same as for mean.

3. In Case of evenly spaced set
Mean = Median = Middle term (if the number of terms is odd)
= Mean of middle terms (if the number of terms is even)

4. In case of consecutive integers: IF the number of integers is even then then the Mean = Median != Integer
Suppose the set is {1,2,3,4,5,6}
then Mean = Median = 3.5

SUGGESTION: Don't try remembering the points 1 and 2 above. It does not take much time to calculate them!

Range of a set is the difference between the highest and lowest value of the set.
Example: Suppose the set is {-1,2,3,6,8} then the range will be
8 -(-1) = 9

1. If all the numbers in the set are increased/decreased by the same number(k) then the range DOES NOT CHANGE!
Suppose the set is {a,b,c} (in increasing order)
Range = c-a
Now, lets increase all the numbers by k then the set will become {a+k, b+k, c+k}
New range = c+k -(a+k) = c-a = Old range

2. If all the numbers in the set are multiplied/divided by the same number(k) then the range also gets multiplied/divided by the same number(k)
Proof similar to that for mean.

Mode is the number which has occurred the maximum number of times in the set.
Suppose the set is {1,1,2,2,3,3,3,3,4,5}
then the mode is 3, as 3 has occurred the maximum number of times in the set.

Standard Deviation is an indicator of how spread the numbers are. Standard Deviation is the Root Mean Square (RMS) of the distance of the values from the mean.

Variance = (sum of (squares of difference of each number from mean )) / total number of numbers
Standard deviation = \sqrt{Variance}

1. If all the numbers in the set are increased/decreased by the same number(k) then the Standard Deviation and the Variance DO NOT CHANGE!
(This happens because the mean also gets increased/decreased by the same number and the Variance or Standard Deviation are calculated by subtracting all the numbers by the mean and taking square of them and taking their average. )

2. If all the numbers in the set are multiplied/divided by the same number(k) then the Standard Deviation also gets multiplied by the same number.

3. If all the numbers in the set are multiplied/divided by the same number(k) then the Variance gets multiplied by the Square of the number.

Example:
Suppose the set is (1,2,3,4,5)
then Mean = 3
Variance = { (3-1)^2 + (3-2)^2 + (3-3)^2 + (3-4)^2 + (3-5)^2)} / 5
= (4+1+0+1+4)/5
= 2
Standard Deviation = \sqrt{Variance} = \sqrt{2}

Arithmetic Sequence is the sequence in which each number differs from its previous by a constant value (d)
Arithmetic sequence is generally denoted as
a , a+d , a+2d+,..., a+(n-1)d
where, a is the first term of the sequence.
d is the common difference
n is the number of terms in the sequence.
Tn is the nth term of the sequence.

Tn = a + (n-1)d
A.M. = Arithmetic mean of the sequence = Mean of First term and last term = (a + a+(n-1)d)/2
= (2a+ (n-1)d)/2
Sum of all the terms of the sequence = A.M. * n = (n/2) * (2a + (n-1)d)

Problems:

1. If the mean of numbers 28, x, 42, 78 and 104 is 62, then what is the mean of 128, 255, 511, 1023 and x?

A. 395
B. 275
C. 355
D. 415
E. 365

Solution:
the mean of numbers 28, x, 42, 78 and 104 is 62
=> (28+x+42+78+104)/5 = 62
=> x = 58

the mean of 128, 255, 511, 1023 and x = mean of 128, 255, 511, 1023 and 58
= (128+255+511+1023+58)/5 = 1975/5 = 395

http://gmatclub.com/forum/if-the-mean-of-numbers-28-x-42-78-and-104-is-62-then-135288.html

2. Set S consists of 5 values, not necessarily in ascending order: {4, 8, 12, 16, x}. For how many values of x does the mean of set S equal the median of set S?

(A) Zero
(B) One
(C) Two
(D) Three
(E) More than three

Solution:
we need to first decide where will we position x
suppose we keep x at the center then the set in ascending order will be
{4,8,x,12,16}
now the median = x so the mean also has to be x
=> (4+8+x+12+16)/5 = x
=> x= 10
which is possible. So, x=10 is one such value

Now lets put x at the left of 8 so the median will be 8 now. So even the mean has to be 8
=> (4+8+x+12+16)/5 = 8
=> x= 0
Which is possible. So, x=0 is one such value

Now lets put x at the right of 12 so the median will be 12 now. So even the mean has to be 12
=> (4+8+x+12+16)/5 = 12
=> x= 20
Which is possible. So, x=20 is one such value

So, there are three such values for which mean = median.

http://gmatclub.com/forum/set-s-consists-of-5-values-not-necessarily-in-ascending-144018.html

3. http://gmatclub.com/forum/set-a-3-3-3-4-5-5-5-has-a-standard-deviation-of-138266.html

Looking for a Quant Tutor?

Check out my post for the same
http://gmatclub.com/forum/starting-gmat ... 35537.html

Hope it helps!
Good Luck!
_________________

Originally posted by BrushMyQuant on 13 Dec 2012, 08:15.
Last edited by BrushMyQuant on 06 Oct 2019, 04:08, edited 1 time in total.
Non-Human User Joined: 09 Sep 2013
Posts: 13742
Re: How To Solve: Statistics  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: How To Solve: Statistics   [#permalink] 02 Dec 2019, 11:12
Display posts from previous: Sort by

# How To Solve: Statistics  