Last visit was: 13 Jul 2025, 20:02 It is currently 13 Jul 2025, 20:02
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,639
Own Kudos:
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,639
Kudos: 741,125
 [158]
7
Kudos
Add Kudos
151
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
gmatophobia
User avatar
Quant Chat Moderator
Joined: 22 Dec 2016
Last visit: 13 Jul 2025
Posts: 3,150
Own Kudos:
8,978
 [27]
Given Kudos: 1,860
Location: India
Concentration: Strategy, Leadership
Products:
Posts: 3,150
Kudos: 8,978
 [27]
19
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
User avatar
MartyMurray
Joined: 11 Aug 2023
Last visit: 12 Jul 2025
Posts: 1,528
Own Kudos:
5,022
 [24]
Given Kudos: 150
GMAT 1: 800 Q51 V51
Expert
Expert reply
GMAT 1: 800 Q51 V51
Posts: 1,528
Kudos: 5,022
 [24]
16
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
General Discussion
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,996
Own Kudos:
7,928
 [16]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,996
Kudos: 7,928
 [16]
12
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -3
E. -2

0.0001 < 0.000125 < 0.001

10ˉ⁴ < 0.000125 < 10ˉ³

k = -3

Answer: D
User avatar
Vineela.mk
Joined: 22 Apr 2017
Last visit: 25 Nov 2023
Posts: 4
Own Kudos:
11
 [11]
Given Kudos: 5
Posts: 4
Kudos: 11
 [11]
11
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmatophobia
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -2
E. -1

\(10^{k-1} < 0.000125 < 10^k\)

\(10^{k-1} < 125*10^{-6} < 10^k\)

Dividing all sides by \(10^{-6}\)

\(10^{k-1+6} < 125 < 10^{k+6}\)

\(10^{k+5} < 125 < 10^{k+6}\)

Therefore \(k + 5 = 2\)

\(k = -3\)


How did you deduce k + 5 = 2? What am I missing?
User avatar
Paras96
Joined: 11 Sep 2022
Last visit: 30 Dec 2023
Posts: 488
Own Kudos:
279
 [15]
Given Kudos: 2
Location: India
Paras: Bhawsar
GMAT 1: 590 Q47 V24
GMAT 2: 580 Q49 V21
GMAT 3: 700 Q49 V35
GPA: 3.2
WE:Project Management (Other)
GMAT 3: 700 Q49 V35
Posts: 488
Kudos: 279
 [15]
13
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
10^(k−1)<0.000125<10^k
=>10^(k−1)<125*10^(-6)<10^k
=>10^(k−1)<125*10^(-6)<10^k
=>10^(k−1+6)<125<10^(k +6)
=>10^(k+5)<125<10^(k +6)

Since,
=> 100<125<1000
=>10^2<125<10^3

Therefore k+5=2
=>k=-3

Hence D
User avatar
gmatophobia
User avatar
Quant Chat Moderator
Joined: 22 Dec 2016
Last visit: 13 Jul 2025
Posts: 3,150
Own Kudos:
8,978
 [9]
Given Kudos: 1,860
Location: India
Concentration: Strategy, Leadership
Products:
Posts: 3,150
Kudos: 8,978
 [9]
9
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Vineela.mk
How did you deduce k + 5 = 2? What am I missing?

Vineela.mk -

Quote:
\(10^{k+5} < 125 < 10^{k+6}\)

Let's take one part at a time -

\(10^{k+5} < 125 \)

We know k is an integer and that \(10^{k+5} < 125 \). The value, \(10^{k+5}\) is a power of 10. The closest power of 10 which is less than 125 is 100. Therefore we can write the expression as

\(10^{k+5} \leq 100 \)

\(10^{k+5} \leq 10^2 \)

Comparing the powers

\(k + 5 \leq 2\)

\(k \leq -3\)

\(125 < 10^{k+6} \)

The closest power of 10 which is greater than 125 is 1000. Therefore we can write the expression as

\(1000 \leq 10^{k+6} \)

\(10^3 \leq 10^{k+6} \)

Comparing the powers

\(3 \leq k+6 \)

\(-3 \leq k \)

The common value of \(k\) from both ⇒ \(k = -3\)

Hope this helps.
User avatar
Hoozan
Joined: 28 Sep 2018
Last visit: 27 Jun 2025
Posts: 689
Own Kudos:
Given Kudos: 248
GMAT 1: 660 Q48 V33 (Online)
GMAT 2: 700 Q49 V37
Products:
GMAT 2: 700 Q49 V37
Posts: 689
Kudos: 667
Kudos
Add Kudos
Bookmarks
Bookmark this Post
gmatophobia
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -2
E. -1

\(10^{k-1} < 0.000125 < 10^k\)

\(10^{k-1} < 125*10^{-6} < 10^k\)

Dividing all sides by \(10^{-6}\)

\(10^{k-1+6} < 125 < 10^{k+6}\)

\(10^{k+5} < 125 < 10^{k+6}\)

Therefore \(k + 5 = 2\)

\(k = -3\)

After arriving at \(10^{k+5} < 125 < 10^{k+6}\) how did you conclude that \(k + 5 = 2\) ??
User avatar
gmatophobia
User avatar
Quant Chat Moderator
Joined: 22 Dec 2016
Last visit: 13 Jul 2025
Posts: 3,150
Own Kudos:
Given Kudos: 1,860
Location: India
Concentration: Strategy, Leadership
Products:
Posts: 3,150
Kudos: 8,978
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hoozan
After arriving at \(10^{k+5} < 125 < 10^{k+6}\) how did you conclude that \(k + 5 = 2\) ??

Hi Hoozan

Checking if you got a chance to refer to this post -

https://gmatclub.com/forum/if-k-is-an-i ... l#p3262194

Let me know if you still have any question.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 11 Jul 2025
Posts: 16,101
Own Kudos:
74,306
 [6]
Given Kudos: 475
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,101
Kudos: 74,306
 [6]
3
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -3
E. -2
­\(10^{k-1} < 0.000125 < 10^k\)

First notice that all options are negative so let's take powers of 10 to the denominator.

\(10^{k-1} < \frac{125}{10^6} < 10^k\)
\(10^{k-1} < \frac{1.25*10^2}{10^6} < 10^k\)
\(10^{k-1} < \frac{ 1.25}{10^4} < 10^k\)

We know that
\(\frac{1}{10^4} < \frac{ 1.25}{10^4} < \frac{10}{10^4}\)

\(10^{-4} < \frac{ 1.25}{10^4} < 10^{-3}\)

k = -3­

Answer (D)

Method 2:

\(10^{k-1} < 0.000125 < 10^k\)

\(1*10^{k-1} < 1.25 * 10^{-4} < 10*10^{k-1}\)

Hence k - 1 = -4
k = -3
User avatar
colfer
Joined: 16 Mar 2024
Last visit: 03 Jun 2024
Posts: 15
Own Kudos:
Given Kudos: 1
Posts: 15
Kudos: 6
Kudos
Add Kudos
Bookmarks
Bookmark this Post
­10^(k-1) < 1.25* 10^-4 < 10^-k 

­10^(k-1) <10^-4 < 10^-k 
User avatar
DanTheGMATMan
Joined: 02 Oct 2015
Last visit: 13 Jul 2025
Posts: 353
Own Kudos:
Given Kudos: 9
Expert
Expert reply
Posts: 353
Kudos: 168
Kudos
Add Kudos
Bookmarks
Bookmark this Post
­Approximate that middle term a bit. No sweat:

User avatar
aryamannm750+
Joined: 03 Jun 2023
Last visit: 29 Aug 2024
Posts: 5
Own Kudos:
Given Kudos: 8
Posts: 5
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel please attach more questions like these!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,639
Own Kudos:
741,125
 [2]
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,639
Kudos: 741,125
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
aryamannm750+
Bunuel please attach more questions like these!
­
Check Exponents and Inequalities Questions.
User avatar
gmatcrammer123
Joined: 31 Jul 2024
Last visit: 02 Oct 2024
Posts: 2
Own Kudos:
1
 [1]
Posts: 2
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I solved it this way:

If you remember that 1/8 = 0.125

Then

.000125 = (1/10^3)(1/8)
or
.000125 = (10^-3)(1/8)

Because

(1/10) < (1/8) < (1)

Then we know that

(1/10^3)(1/10) < (1/10^3)(1/8) < (1/10^3)(1)

or

(1/10^3)(1/10) < .000125 < (1/10^3)(1)

Which means

(1/10^4) < .000125 < (1/10^3)

or

10^-4 < .000125 < 10^-3

Therefore, k=-3
User avatar
hemanthPA
Joined: 09 Mar 2023
Last visit: 18 Mar 2025
Posts: 50
Own Kudos:
22
 [1]
Given Kudos: 11
Posts: 50
Kudos: 22
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post

Attachment:
GMAT-Club-Forum-d12v6stv.png
GMAT-Club-Forum-d12v6stv.png [ 21.14 KiB | Viewed 3755 times ]
User avatar
shubhim20
Joined: 03 Feb 2025
Last visit: 09 Jul 2025
Posts: 93
Own Kudos:
Given Kudos: 143
Posts: 93
Kudos: 1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
how did you come up with k+5=2
gmatophobia
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -2
E. -1

\(10^{k-1} < 0.000125 < 10^k\)

\(10^{k-1} < 125*10^{-6} < 10^k\)

Dividing all sides by \(10^{-6}\)

\(10^{k-1+6} < 125 < 10^{k+6}\)

\(10^{k+5} < 125 < 10^{k+6}\)

Therefore \(k + 5 = 2\)

\(k = -3\)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 13 Jul 2025
Posts: 102,639
Own Kudos:
Given Kudos: 98,178
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 102,639
Kudos: 741,125
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shubhim20
how did you come up with k+5=2
gmatophobia
Bunuel
If k is an integer and \(10^{k-1} < 0.000125 < 10^k\), then k =

A. -6
B. -5
C. -4
D. -2
E. -1

\(10^{k-1} < 0.000125 < 10^k\)

\(10^{k-1} < 125*10^{-6} < 10^k\)

Dividing all sides by \(10^{-6}\)

\(10^{k-1+6} < 125 < 10^{k+6}\)

\(10^{k+5} < 125 < 10^{k+6}\)

Therefore \(k + 5 = 2\)

\(k = -3\)

That doubt has been addressed a couple of times above.

Basically, since 125 lies between two consecutive powers of 10, we know that 100 < 125 < 1,000, or 10^2 < 125 < 10^3. That means k + 5 = 2, which gives k = -3.
Moderators:
Math Expert
102639 posts
PS Forum Moderator
691 posts