GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Dec 2018, 08:45

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • $450 Tuition Credit & Official CAT Packs FREE

     December 15, 2018

     December 15, 2018

     10:00 PM PST

     11:00 PM PST

    Get the complete Official GMAT Exam Pack collection worth $100 with the 3 Month Pack ($299)
  • FREE Quant Workshop by e-GMAT!

     December 16, 2018

     December 16, 2018

     07:00 AM PST

     09:00 AM PST

    Get personalized insights on how to achieve your Target Quant Score.

If the average (arithmetic mean) of a, b and c is m, is their standard

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 6639
GMAT 1: 760 Q51 V42
GPA: 3.82
Premium Member
If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 01:10
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

63% (01:06) correct 37% (01:01) wrong based on 67 sessions

HideShow timer Statistics

[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2

_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $99 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

Senior Manager
Senior Manager
User avatar
P
Joined: 18 Jun 2018
Posts: 252
Premium Member CAT Tests
Re: If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 02:02
2
2
MathRevolution wrote:
[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2


OA:A

Given : \(\frac{a+b+c}{3}= m\)
is standard deviation of a,b and c less than 1?

Statement 1 : \(a, b\) and \(c\) are consecutive integers with \(a < b < c\).
It means \(b\) is mean,
Standard Deviation, \(S.D =\sqrt{\frac{(a-b)^2+(b-b)^2+(c-b)^2}{3}}\)

\(a-b=-1,c-b=1\) as \(a,b,c\) are consecutive number.

Standard Deviation, \(S.D =\sqrt{\frac{(-1)^2+(0)^2+(1)^2}{3}} =\sqrt{\frac{2}{3}}<1\)

Statement 1 alone is sufficient.

2) \(m = 2\)

Now Plugging in number,taking \(a=1,b=2\) and \(c=3\)
\(S.D<1\) as already seen in statement 1 that 3 consecutive number have S.D less than 1.
or We could have taken \(a=2,b=2,c=2\), then also m would have been \(2\). In that case \(S.D=0\)
Is S.D<1 for a,b,c : Yes

Now taking \(a=-4, b =2, c = 8\), mean would be 2 as required by Statement 2.
Standard Deviation, \(S.D =\sqrt{\frac{(-4-2)^2+(2-2)^2+(8-2)^2}{3}}= \sqrt{\frac{72}{3}}=2\sqrt{6}>1\)
Is S.D<1 for a,b,c : No

Statement 2 alone is not sufficient.
VP
VP
User avatar
D
Joined: 09 Mar 2016
Posts: 1231
If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 05:06
Bismarck wrote:
MathRevolution wrote:
[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2


OA:A

Given : \(\frac{a+b+c}{3}= m\)
is standard deviation of a,b and c less than 1?

Statement 1 : \(a, b\) and \(c\) are consecutive integers with \(a < b < c\).
It means \(b\) is mean,
Standard Deviation, \(S.D =\sqrt{\frac{(a-b)^2+(b-b)^2+(c-b)^2}{3}}\)

\(a-b=-1,c-b=1\) as \(a,b,c\) are consecutive number.

Standard Deviation, \(S.D =\sqrt{\frac{(-1)^2+(0)^2+(1)^2}{3}} =\sqrt{\frac{2}{3}}<1\)

Statement 1 alone is sufficient.

2) \(m = 2\)

Now Plugging in number,taking \(a=1,b=2\) and \(c=3\)
\(S.D<1\) as already seen in statement 1 that 3 consecutive number have S.D less than 1.
or We could have taken \(a=2,b=2,c=2\), then also m would have been \(2\). In that case \(S.D=0\)
Is S.D<1 for a,b,c : Yes

Now taking \(a=-4, b =2, c = 8\), mean would be 2 as required by Statement 2.
Standard Deviation, \(S.D =\sqrt{\frac{(-4-2)^2+(2-2)^2+(8-2)^2}{3}}= \sqrt{\frac{72}{3}}=2\sqrt{6}>1\)
Is S.D<1 for a,b,c : No

Statement 2 alone is not sufficient.
'


Bismarck what if you took 20, 21, 22 for statement one :?
Senior Manager
Senior Manager
User avatar
P
Joined: 18 Jun 2018
Posts: 252
Premium Member CAT Tests
Re: If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 05:18
1
dave13 wrote:
Bismarck wrote:
MathRevolution wrote:
[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2


OA:A

Given : \(\frac{a+b+c}{3}= m\)
is standard deviation of a,b and c less than 1?

Statement 1 : \(a, b\) and \(c\) are consecutive integers with \(a < b < c\).
It means \(b\) is mean,
Standard Deviation, \(S.D =\sqrt{\frac{(a-b)^2+(b-b)^2+(c-b)^2}{3}}\)

\(a-b=-1,c-b=1\) as \(a,b,c\) are consecutive number.

Standard Deviation, \(S.D =\sqrt{\frac{(-1)^2+(0)^2+(1)^2}{3}} =\sqrt{\frac{2}{3}}<1\)

Statement 1 alone is sufficient.

2) \(m = 2\)

Now Plugging in number,taking \(a=1,b=2\) and \(c=3\)
\(S.D<1\) as already seen in statement 1 that 3 consecutive number have S.D less than 1.
or We could have taken \(a=2,b=2,c=2\), then also m would have been \(2\). In that case \(S.D=0\)
Is S.D<1 for a,b,c : Yes

Now taking \(a=-4, b =2, c = 8\), mean would be 2 as required by Statement 2.
Standard Deviation, \(S.D =\sqrt{\frac{(-4-2)^2+(2-2)^2+(8-2)^2}{3}}= \sqrt{\frac{72}{3}}=2\sqrt{6}>1\)
Is S.D<1 for a,b,c : No

Statement 2 alone is not sufficient.
'


Bismarck what if you took 20, 21, 22 for statement one :?


dave13

taking \(a=20, b= 21\) and \(c =22\)
Mean,\(m\) \(= \frac{20+21+22}{3} =\frac{63}{3}=21\), which is equal to \(b\)
\(S.D =\sqrt{\frac{(a-m)^2+(b-m)^2+(c-m)^2}{3}}\)
\(S.D =\sqrt{\frac{(20-21)^2+(21-21)^2+(22-21)^2}{3}}=\sqrt{\frac{(-1)^2+(0)^2+(1)^2}{3}}=\sqrt{\frac{2}{3}}<1\)
\(S.D<1\)
CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3238
Location: Canada
Re: If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 14:03
Top Contributor
MathRevolution wrote:
[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2


Target question: Is the standard deviation of a, b and c less than 1?

Statement 1: a, b and c are consecutive integers with a < b < c.
It's important to know that standard deviation is a measure of dispersion (how spread apart the values are).
So, ANY 3 consecutive integers will have the same standard deviation.
For example, the standard deviation of {1,2,3} = the standard deviation of {6,7,8} = the standard deviation of {23,24,25} etc
So, IF we calculate the standard deviation of {1,2,3} then THAT value will provide sufficient info to the answer to the target question
Since we COULD answer the target question with certainty, statement 1 is SUFFICIENT

Statement 2: m = 2
There are several values a, b and c that satisfy statement 2. Here are two:
Case a: a = 2, b = 2 and c = 2 (mean = 2 and standard deviation = 0). In this case, the answer to the target question is YES, the standard deviation IS less than 1
Case b: a = -100, b = 0 and c = 106 (mean = 2 and standard deviation = some number much greater than 1. In this case, the answer to the target question is NO, the standard deviation is NOT less than 1
Since we cannot answer the target question with certainty, statement 2 is NOT SUFFICIENT

Answer: A

RELATED VIDEO FROM OUR COURSE

_________________

Test confidently with gmatprepnow.com
Image

Director
Director
User avatar
V
Joined: 06 Jan 2015
Posts: 529
Location: India
Concentration: Operations, Finance
GPA: 3.35
WE: Information Technology (Computer Software)
Premium Member
Re: If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 08 Aug 2018, 18:48
MathRevolution wrote:
[Math Revolution GMAT math practice question]

If the average (arithmetic mean) of a, b and c is m, is their standard deviation less than 1?

1) a, b and c are consecutive integers with a < b < c.
2) m = 2


Is their standard deviation less than 1?

Here standard deviation is a measure of how spread out numbers are. or distance or spread from mean

we need not to calculate the actual SD

1) a, b and c are consecutive integers with a < b < c. For Consecutive integers b=mean

So we can find out the answer

Hence A is Suff

2) m = 2

a,b,c are not given

For ex: a=2 b=2 c=2

SD = 0

If a=1, b=2, c=3

SD varies

Hence A
_________________

आत्मनॊ मोक्षार्थम् जगद्धिताय च

Resource: GMATPrep RCs With Solution

Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 6639
GMAT 1: 760 Q51 V42
GPA: 3.82
Premium Member
Re: If the average (arithmetic mean) of a, b and c is m, is their standard  [#permalink]

Show Tags

New post 10 Aug 2018, 01:31
=>

Forget conventional ways of solving math questions. For DS problems, the VA (Variable Approach) method is the quickest and easiest way to find the answer without actually solving the problem. Remember that equal numbers of variables and independent equations ensure a solution.

We have \(m = \frac{( a + b + c )}{3}\) from the original condition.
Since we have 4 variables and 1 equation, E is most likely to be the answer. So, we should consider conditions 1) & 2) together first. After comparing the number of variables and the number of equations, we can save time by considering conditions 1) & 2) together first.

Conditions 1) & 2)
Since \(a, b\) and \(c\) are consecutive integers, we can assume \(a = b – 1\) and \(c = b + 1\) and \(b = m\). Since \(m = 2\) by condition 2, we have \(a = 1, b = 2, c = 3.\)
The standard deviation is

\(\sqrt{\frac{a-b^2+(b-b)^2+(c-b)^2}{3}}\)

=\(\sqrt{\frac{(-1)^2+0^2+1^2}{3}}\) = \(\sqrt{\frac{2}{3}}\)
which is less than 1.
Thus, both conditions are sufficient, when considered together.

Since this question is a statistics question (one of the key question areas), CMT (Common Mistake Type) 4(A) of the VA (Variable Approach) method tells us that we should also check answers A and B.

Condition 1)
Since \(a, b\) and \(c\) are consecutive integers, we can assume that \(a = b – 1\) and \(c = b + 1\) and \(b = m\). Then \(a – b = -1\) and \(c – b = 1\), and the standard deviation is
\(\sqrt{\frac{a-b^2+(b-b)^2+(c-b)^2}{3}}\)

=\(\sqrt{\frac{(-1)^2+0^2+1^2}{3}}\) = \(\sqrt{\frac{2}{3}}\)
which is less than 1.
Thus, condition 1) is sufficient on its own.

Condition 2)
Condition 2) is not sufficient since it gives us no information about \(a, b\) and \(c\).

Therefore, A is the answer.

Answer: A

In cases where 3 or more additional equations are required, such as for original conditions with “3 variables”, or “4 variables and 1 equation”, or “5 variables and 2 equations”, conditions 1) and 2) usually supply only one additional equation. Therefore, there is an 80% chance that E is the answer, a 15% chance that C is the answer, and a 5% chance that the answer is A, B or D. Since E (i.e. conditions 1) & 2) are NOT sufficient, when taken together) is most likely to be the answer, it is generally most efficient to begin by checking the sufficiency of conditions 1) and 2), when taken together. Obviously, there may be occasions on which the answer is A, B, C or D.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $99 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

GMAT Club Bot
Re: If the average (arithmetic mean) of a, b and c is m, is their standard &nbs [#permalink] 10 Aug 2018, 01:31
Display posts from previous: Sort by

If the average (arithmetic mean) of a, b and c is m, is their standard

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.