Bunuel
If x and y are distinct integers so that xy ≠ 0, which of the following must be true?
(A) \(1 - \frac{(1 - x)}{x} = 1\)
(B) \(\frac{1}{x} + \frac{1}{y} = \frac{xy}{(y + x)}\)
(C) \(\frac{y}{(y - x)} + \frac{x}{(x - y)} = 1\)
(D) \(\frac{(x - y)}{(y - x)} = 1\)
(E) \((1 + \frac{1}{x})*(\frac{1}{x + 1}) = 1\)
One can solve this question very easily by plugging in some values for x and y or use algebraic approach:
A. \(1 - \frac{(1 - x)}{x} = 1\) --> \(LHS=1 - \frac{(1 - x)}{x}=\frac{x-(1-x)}{x}=\frac{2x-1}{x}\). Discard.
B. \(\frac{1}{x} + \frac{1}{y} = \frac{xy}{(y + x)}\) --> \(LHS=\frac{1}{x} + \frac{1}{y}=\frac{x+y}{xy}\). Discard.
C. \(\frac{y}{(y - x)} + \frac{x}{(x - y)} = 1\) --> \(LHS=\frac{y}{(y - x)} + \frac{x}{(x - y)}=\frac{y}{(y - x)} - \frac{x}{(y - x)}=\frac{y-x}{y-x}=1\). BINGO.
D. \(\frac{(x - y)}{(y - x)} = 1\) --> \(LHS=\frac{(x - y)}{(y - x)}=-\frac{x-y}{x-y}=-1\). Discard.
E. \((1 + \frac{1}{x})*(\frac{1}{x + 1}) = 1\) --> \(LHS=(1 + \frac{1}{x})*(\frac{1}{x + 1})=\frac{x+1}{x}*\frac{1}{x+1}=\frac{1}{x}\). Discard.
Answer: C.