GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 17 Aug 2018, 19:59

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In the correctly worked addition problem above, A, B, C, D

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Board of Directors
User avatar
P
Joined: 01 Sep 2010
Posts: 3443
In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 12 Mar 2012, 07:56
11
68
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

19% (02:37) correct 81% (02:53) wrong based on 2208 sessions

HideShow timer Statistics

Attachment:
challprobadd.jpg
challprobadd.jpg [ 1.27 KiB | Viewed 28605 times ]
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

(1) A, B, and C are consecutive odd integers

(2) E = 2

_________________

COLLECTION OF QUESTIONS AND RESOURCES
Quant: 1. ALL GMATPrep questions Quant/Verbal 2. Bunuel Signature Collection - The Next Generation 3. Bunuel Signature Collection ALL-IN-ONE WITH SOLUTIONS 4. Veritas Prep Blog PDF Version 5. MGMAT Study Hall Thursdays with Ron Quant Videos
Verbal:1. Verbal question bank and directories by Carcass 2. MGMAT Study Hall Thursdays with Ron Verbal Videos 3. Critical Reasoning_Oldy but goldy question banks 4. Sentence Correction_Oldy but goldy question banks 5. Reading-comprehension_Oldy but goldy question banks

Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47977
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 12 Mar 2012, 13:22
18
18
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Board of Directors
User avatar
P
Joined: 01 Sep 2010
Posts: 3443
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 12 Mar 2012, 14:12
Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8188
Location: Pune, India
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 13 Mar 2012, 00:12
3
2
carcass wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

(1) A, B, and C are consecutive odd integers

(2) E = 2


I concur with Bunuel here. You are not likely to see this, at least not in DS format. You could possibly see something similar in PS format and it will be based on logic, not hit and trial. Hit and trial makes it long, repetitive and cumbersome, things GMAT doesn't mess with. You will have a starting point and there will be a reason why an alphabet will stand for a particular digit.
_________________

Karishma
Veritas Prep GMAT Instructor

Save up to $1,000 on GMAT prep through 8/20! Learn more here >

GMAT self-study has never been more personalized or more fun. Try ORION Free!

Intern
Intern
avatar
Joined: 07 Jan 2013
Posts: 39
Location: India
Concentration: Finance, Strategy
GMAT 1: 570 Q46 V23
GMAT 2: 710 Q49 V38
GPA: 2.9
WE: Information Technology (Computer Software)
Reviews Badge
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 18 Oct 2013, 09:34
Bunuel wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.


Hi Bunuel ,

Just curious to know why A=1,B=3,C=5 and sum = 9 and the resulting number 96 cannot be the case. It says any digits so why EFG =096 cant be a possibility??
_________________

Help with Kudos if I add to your knowledge realm.

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47977
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 20 Oct 2013, 13:20
adg142000 wrote:
Bunuel wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.


Hi Bunuel ,

Just curious to know why A=1,B=3,C=5 and sum = 9 and the resulting number 96 cannot be the case. It says any digits so why EFG =096 cant be a possibility??


From the stem we can assume that E is not 0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Veritas Prep GMAT Instructor
User avatar
P
Joined: 16 Oct 2010
Posts: 8188
Location: Pune, India
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 20 Oct 2013, 20:27
1
adg142000 wrote:

Hi Bunuel ,

Just curious to know why A=1,B=3,C=5 and sum = 9 and the resulting number 96 cannot be the case. It says any digits so why EFG =096 cant be a possibility??


To add to what Bunuel said, the question stem tells us that when we add three 2 digit numbers, we get a 3 digit number. Had you obtained a 2 digit number as the sum, you would have wirtten the addition as

AD
BD
CD
---
FG

and not EFG.
_________________

Karishma
Veritas Prep GMAT Instructor

Save up to $1,000 on GMAT prep through 8/20! Learn more here >

GMAT self-study has never been more personalized or more fun. Try ORION Free!

Manager
Manager
User avatar
Joined: 22 Feb 2009
Posts: 189
GMAT ToolKit User
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 01 Aug 2014, 16:34
VeritasPrepKarishma wrote:
carcass wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

(1) A, B, and C are consecutive odd integers

(2) E = 2


I concur with Bunuel here. You are not likely to see this, at least not in DS format. You could possibly see something similar in PS format and it will be based on logic, not hit and trial. Hit and trial makes it long, repetitive and cumbersome, things GMAT doesn't mess with. You will have a starting point and there will be a reason why an alphabet will stand for a particular digit.


That's a relief. Cause I was able to solve the problem but it took over 5 mins.
_________________

.........................................................................
+1 Kudos please, if you like my post

Manager
Manager
User avatar
Joined: 22 Feb 2009
Posts: 189
GMAT ToolKit User
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 01 Aug 2014, 16:35
Bunuel wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.


how long does it take when you did your error and trial? It took me almost 7 minutes :(
_________________

.........................................................................
+1 Kudos please, if you like my post

Intern
Intern
avatar
Joined: 12 Jan 2015
Posts: 1
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 05 Jul 2015, 23:27
Hi, Why cant it be AD =56; BD =76; CD =96 and EFG =218

In this case the sum is E+F+G = 11 only.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47977
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 06 Jul 2015, 00:55
Intern
Intern
avatar
Joined: 06 Apr 2015
Posts: 35
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 06 Jul 2015, 21:35
Another version of the same numbers could be
16 +36 + 56 = 108 => 9

Bunuel wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47977
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 07 Jul 2015, 01:07
1
kelvind13 wrote:
Another version of the same numbers could be
16 +36 + 56 = 108 => 9

Bunuel wrote:
In the correctly worked addition problem above, A, B, C, D, E, F, and G are distinct digits. What is the sum of E, F, and G ?

AD
BD
CD
---
EFG

Notice that E can be only 1 or 2 (no sum of 3 two-digit numbers can give number more than 297).

(1) A, B, and C are consecutive odd integers. 3 cases are possible:

(i) A, B, and C are 1, 3, and 5 (it doesn't matter which is which) --> 1+3+5=9 then E (hundreds digit) can only be 1, which is not possible since we are told that the digits are distinct and we already have 1 (A, B, or C);

(ii) A, B, and C are 3, 5, and 7 (it doesn't matter which is which) --> 3+5+7=15 then E (hundreds digit) can only be 1. So, D can be 0, 2, 4, 6, 8, or 9. After trial and error we can get that only D=4 will give all distinct digits:
34
54
74
---
162

E+F+G=9.

(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

E+F+G=9.

So, as you can see in both valid cases (ii and iii) the sum of E, F, and G is 9. Sufficient.

(2) E = 2. After some trial and error you can find that several numbers can be found which will give different values for the sum of E, F, and G, for example: 58+78+98=234 and 38+78+98=214. Not sufficient.

Answer: A.

P.S. Though not very hard this question is not likely to appear on the GMAT because of long and boring math.


No, this does not work: A and E must be distinct. please refer to the highlighted part.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
User avatar
B
Joined: 03 May 2017
Posts: 108
GMAT ToolKit User
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 02 Oct 2017, 21:43
Interesting problem, luckily the fact the consecutive odd restrictions might actually help to eliminate numbers as Bunuel elegantly decsribed. Interestingly another case, albeit not consecutive odd i.e A,B,C as 7,8,9 also result in an E+F+G as 9. See below.
71
81
+91
243
2+4+3= 9
Intern
Intern
User avatar
B
Joined: 06 Feb 2016
Posts: 22
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 19 Jan 2018, 07:48
Hi Bunuel
Quote:
(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

Why we do not consider 0 as an option for D?
Thanks in advance.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47977
Re: In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 19 Jan 2018, 08:01
1
StaicyT wrote:
Hi Bunuel
Quote:
(iii) A, B, and C are 5, 7, and 9 (it doesn't matter which is which) --> 5+7+9=21 then E (hundreds digit) can only be 2. So, D can be 1, 3, 4, 6, or 8. After trial and error we can get that only D=8 will give all distinct digits:
58
78
98
---
234

Why we do not consider 0 as an option for D?
Thanks in advance.


50 + 70 + 90 =220, so E and F are both 2, while we are told that all the digits are distinct.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 08 Jun 2018
Posts: 1
In the correctly worked addition problem above, A, B, C, D  [#permalink]

Show Tags

New post 11 Jun 2018, 11:57
What about 58 + 78 + 98 = 234? Would this not qualify since all the letters have a different value?
In the correctly worked addition problem above, A, B, C, D &nbs [#permalink] 11 Jun 2018, 11:57
Display posts from previous: Sort by

In the correctly worked addition problem above, A, B, C, D

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.