Bunuel wrote:

Three table runners have a combined area of 200 square inches. By overlapping the runners to cover 80% of a table of area 175 square inches, the area that is covered by exactly two layers of runner is 24 square inches. What is the area of the table that is covered with three layers of runner?

(A) 18 square inches

(B) 20 square inches

(C) 24 square inches

(D) 28 square inches

(E) 30 square inches

Kudos for a correct solution.

VERITAS PREP OFFICIAL SOLUTION:Let’s first try to understand what exactly is given to us. The area of all the runners is equal to 200 square inches.

Runner 1 + Runner 2 + Runner 3 = 200

In our diagram, this area is represented by

(a + d + g + e) + (b + d + g + f) + (c + e + g + f) = 200

(We need to find the value of g i.e. the area of the table that is covered with three layers of runner.)

Area of table covered is only 80% of 175 i.e. only 140 square inches. This means that if each section is counted only once, the total area covered is 140 square inches.

a + b + c + d + e + f + g = 140

So the overlapping regions are obtained by subtracting second equation from the first. We get d + e + f + 2g = 60

But d + e + f (area with exactly two layers of runner) = 24

So 2g = 60 – 24 = 36

g = 18 square inches.

Note that you don’t need to make all these equations and can directly jump to d + e + f + 2g = 60. We wrote these equations down only for clarity. It is a matter of thinking vs solving. If we think more, we have to solve less. Let’s see how.

Combined area of runners is 200 square inches while area of table they cover is only 140 square inches. So what does the extra 60 square inches of runner do? It covers another runner!

Wherever there are two runners overlapping, one runner is not covering the table but just another runner. Wherever there are three runners overlapping, two runners are not covering the table but just the third runner at the bottom.

So can we say that (d + e + f) represents the area where one runner is covering another runner and g is the area where two runners are covering another runner?

Put another way, can we say d + e + f + 2g = 60?

We know that d + e + f = 24 giving us g = 18 square inches

This entire ‘thinking process’ takes ten seconds once you are comfortable with it and your answer would be out in about 30 sec!

_________________

New to the Math Forum?

Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:

GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:

PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.

What are GMAT Club Tests?

Extra-hard Quant Tests with Brilliant Analytics