Bunuel wrote:
A bike traveling at a certain constant speed takes 5 minutes longer to travel 10 miles than it would take to travel 10 miles at 60 miles per hour. At what speed, in miles per hour, is the bike traveling?
(A) 36
(B) 40
(C) 42
(D) 48
(E) 50
R*T=D - just change time from hours to minutes and back
Scenario 1 - find time \(R*T=D\)
\(60mph * T_{hrs}=10mi\)
\(T_1=\frac{10mi}{60mph}=\frac{1}{6}\) of an hour
\(\frac{1}{6}hr*\frac{60min}{1hr}==10\) minutes
Scenario 2 find rate
Same distance.
5 minutes longer: \((10+5)=15\) minutes
Time in hours?
\((15mins *\frac{1 hr}{60mins}=
\frac{1}{4}\) hour
Rate\(_2\)? R*T = D
Rate, \(R_2*\frac{1}{4}hr=10mi\)
Rate, \(R_2\)
\(=\frac{10mi}{(\frac{1}{4}hr)}=(10*\frac{4}{1})mph=40\) mph
Answer B
Inverse proportionTrip 1, time in minutes:
\(\frac{10mi}{60mph}=\frac{1}{6}\) hour
\(\frac{1}{6}hr*60mins=10\) minutes
Trip 2, R is 5 minutes longer = 15 minutes
\(\frac{T_2}{T_1}=\frac{15}{10}=\frac{3}{2}\)
Same distance. Rate and time are inversely proportional. Flip the time ratio:\(\frac{2}{3}\)
Requiring \(\frac{3}{2}\) the time of Trip 1, the bike in Trip 2 will travel at \(\frac{2}{3}\) its former rate in Trip 1.
\(60mph*\frac{2}{3}=40\) mph
Answer B
_________________
SC Butler has resumed! Get
two SC questions to practice, whose links you can find by date,
here.Instructions for living a life. Pay attention. Be astonished. Tell about it. -- Mary Oliver