Last visit was: 19 Nov 2025, 13:41 It is currently 19 Nov 2025, 13:41
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
FJ24
Joined: 19 May 2019
Last visit: 06 Oct 2019
Posts: 7
Own Kudos:
Given Kudos: 8
Posts: 7
Kudos: 5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,807
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 19 Nov 2025
Posts: 21,716
Own Kudos:
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,716
Kudos: 26,996
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
NikTek
Joined: 02 Feb 2022
Last visit: 27 Sep 2023
Posts: 18
Own Kudos:
Given Kudos: 92
Posts: 18
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
sandeep800

hey Bunuel Thanx,but can u please come out with a Image,only 2 or 3 coordinate value drawn in it....i am sooooo confused....

All 12 squares.

Image posted on our forum by GMATGuruNY:
Attachment:
square.PNG
How is the condition of 1 vertex on origin satisfied in these squares shown in the diagram??
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,351
Kudos
Add Kudos
Bookmarks
Bookmark this Post
NikTek
Bunuel
sandeep800

hey Bunuel Thanx,but can u please come out with a Image,only 2 or 3 coordinate value drawn in it....i am sooooo confused....

All 12 squares.

Image posted on our forum by GMATGuruNY:
Attachment:
square.PNG
How is the condition of 1 vertex on origin satisfied in these squares shown in the diagram??

Each image has four squares and one of the vertices of each square is at the origin.
User avatar
Adarsh_24
Joined: 06 Jan 2024
Last visit: 03 Apr 2025
Posts: 251
Own Kudos:
Given Kudos: 2,016
Posts: 251
Kudos: 57
Kudos
Add Kudos
Bookmarks
Bookmark this Post
When 2 vertices of the square are integer coordinates, rest should also be integers ?
So we need to establish a relationship between origin and one vertex only?

If correct, does this extend to 1 vertex is integer. Then all other 3 vertices are integer coordinates?

Oh I see Scott has already made that statement.
User avatar
Natansha
Joined: 13 Jun 2019
Last visit: 19 Nov 2025
Posts: 150
Own Kudos:
Given Kudos: 84
Posts: 150
Kudos: 29
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
jpr200012
A certain square is to be drawn on a coordinate plane. One of the vertices must be on the origin, and the square is to have an area of 100. If all coordinates of the vertices must be integers, how many different ways can this square be drawn?

(A) 4
(B) 6
(C) 8
(D) 10
(E) 12

This question becomes much easier if you visualize/draw it.

Let the origin be O and one of the vertices be A. Now, we are told that length of OA must be 10 (area to be 100). So if the coordinates of A is (x, y) then we would have \(x^2+y^2=100\) (distance from the origin to the point A(x, y) can be found by the formula \(d^2=x^2+y^2\))

Now, \(x^2+y^2=100\) has several integer solutions for \(x\) and \(y\), so several positions of vertex A, note that when vertex A has integer coordinates other vertices also have integer coordinates. For example imagine the case when square rests on X-axis to the right of Y-axis, then the vertices are: A(10,0), (10,10), (0,10) and (0,0).

Also you can notice that 100=6^2+8^2 and 100=0^2+10^2, so \(x\) can tale 7 values: -10, -8, -6, 0, 6, 8, 10. For \(x=-10\) and \(x=10\), \(y\) can take only 1 value 0, but for other values of \(x\), \(y\) can take two values positive or negative. For example: when \(x=6\) then \(y=8\) or \(y=-8\). This gives us 1+1+5*2=12 coordinates of point A:

\(x=10\) and \(y=0\), imagine this one to be the square which rests on X-axis and to get the other options rotate OA anticlockwise to get all possible cases;
\(x=8\) and \(y=6\);
\(x=6\) and \(y=8\);
\(x=0\) and \(y=10\);
\(x=-6\) and \(y=8\);
\(x=-8\) and \(y=6\);
\(x=-10\) and \(y=0\);
\(x=-8\) and \(y=-6\);
\(x=-6\) and \(y=-8\);
\(x=0\) and \(y=-10\);
\(x=6\) and \(y=-8\);
\(x=8\) and \(y=-6\).

Answer: E.
Hi Bunuel, as per the soln we have two vertices of the square, the origin (0,0) and 12 cases for point A, I have two queries:

How are we sure that the subsequent other vertices will be integers, and not some fractional values?
Also how are we sure that there is no repetition of squares when we use any of these 12 vertices, as we don't know their corresponding other vertices?
   1   2 
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts