Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

29% (01:39) correct
71% (02:18) wrong based on 178 sessions

HideShow timer Statistics

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A. 48 B. 72 C. 96 D. 120 E. 192

The buses travel at the same constant speed. It would take one bus to travel 4 hours to cover the distance between the cities \(M\) and \(N\) (two buses drove for 2 hours each). We need to find the speed of the bus. If the first bus was delayed by 24 minutes and the second one left 36 minutes earlier, it makes the second bus \(24+36=60\) minutes ahead of the first bus.

The meeting point was 24 miles away on this second day. We know the distance difference between the two meeting points, but we also need to find difference in time those 24 miles were covered. If the second bus drove for 1 hour before the first one departed, each of them had to go for another 1.5 hour to meet (1.5 hour + 1.5 hour + 1 hour). The second bus traveled for 2.5 hours and the first one for 1.5 hour. Therefore the meeting point on the second day was 30 minutes away from that of the previous day.

So the second bus covered 24 miles in 30 minutes, which gives us the speed of the bus, 48 mph. We can calculate the distance as we already know the speed:

\(4*48=192\) miles.

Alternative Explanation

Say the distance between the cities is \(d\) miles.

Since both buses travel at the same constant speed and leave the cities at the same time then they meet at the halfway, so the first meeting point \(P\), is \(\frac{d}{2}\) miles away from \(M\) (and \(N\)).

Next, since the buses meet in 2 hours then the total time to cover \(d\) miles for each bus is 4 hours.

Now, on the second day one bus traveled alone for 1 hour (36min +24min), hence covered \(0.25d\) miles, and \(0.75d\) miles is left to cover.

The buses meet again at the halfway of \(0.75d\), which is 24 miles from \(\frac{d}{2}\):

Hence, \(\frac{d}{2}-24=\frac{0.75d}{2}\), which gives \(d=192\) miles.

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A. 48 B. 72 C. 96 D. 120 E. 192

The buses travel at the same constant speed. It would take one bus to travel 4 hours to cover the distance between the cities \(M\) and \(N\) (two buses drove for 2 hours each). We need to find the speed of the bus. If the first bus was delayed by 24 minutes and the second one left 36 minutes earlier, it makes the second bus \(24+36=60\) minutes ahead of the first bus.

The meeting point was 24 miles away on this second day. We know the distance difference between the two meeting points, but we also need to find difference in time those 24 miles were covered. If the second bus drove for 1 hour before the first one departed, each of them had to go for another 1.5 hour to meet (1.5 hour + 1.5 hour + 1 hour). The second bus traveled for 2.5 hours and the first one for 1.5 hour. Therefore the meeting point on the second day was 30 minutes away from that of the previous day.

So the second bus covered 24 miles in 30 minutes, which gives us the speed of the bus, 48 mph. We can calculate the distance as we already know the speed:

\(4*48=192\) miles.

Alternative Explanation

Say the distance between the cities is \(d\) miles.

Since both buses travel at the same constant speed and leave the cities at the same time then they meet at the halfway, so the first meeting point \(P\), is \(\frac{d}{2}\) miles away from \(M\) (and \(N\)).

Next, since the buses meet in 2 hours then the total time to cover \(d\) miles for each bus is 4 hours.

Now, on the second day one bus traveled alone for 1 hour (36min +24min), hence covered \(0.25d\) miles, and \(0.75d\) miles is left to cover.

The buses meet again at the halfway of \(0.75d\), which is 24 miles from \(\frac{d}{2}\):

Hence, \(\frac{d}{2}-24=\frac{0.75d}{2}\), which gives \(d=192\) miles.

Answer: E

Hey Bunue,

I didn't get why the buses meet again at the halfway of \(0.75d\), which is 24 miles from \(\frac{d}{2}\). May u help to explain?

The buses are travelling at the same speed. One bus is at the point 0.75d when the other bus starts. So, the distance between them is 0.75d and they are travelling at the same speed. Therefore, they will meet halfway through the journey. Hope that helps.

The buses are travelling at the same speed. One bus is at the point 0.75d when the other bus starts. So, the distance between them is 0.75d and they are travelling at the same speed. Therefore, they will meet halfway through the journey. Hope that helps.

total distance can be covered in 4 hrs(Given). Let it be x. After one hour: bus A covers x/4 , bus B covers 0 distance, as there is a delay of one hour between the buses. After two hours: bus A covers x/4 + x/4=x/2( bus A is at point p), bus B covered x/4. Note, at this point of time both are equidistant from the point they met on the round trip i.e 24 kms. In next one hour they will cover 48kms. distance covered in one hour=48 kms, distance covered in four hour = 48*4=192kms. **With diagram it becomes easy to understand.

M------------------------------N Bus-A Bus-B Both at constant equal speed meet at point P which is 2 hrs away so total time is 4 hours for each bus Now on Second day Bus-A departs 36 mins early and Bus-B departs 24 minutes late that means when A traveled for 1 hour, B just left N 1hr. M------|-----------------N A B

Now time left is 3 hrs. Both travel at same constant speed so they will meet after 1.5 hrs In this time A has traveled for 2.5 hours (.5 hour more than yesterday which represents 24miles.) So 4 hours = .5 * 8 is equal to distance of 24*8 = 192miles

its given that 1 bus starts 36 minutes late and the other 24 minutes early which means effectively 1 bus had head start of 1 hr. Since they are traveling at same speed and they meet 24 miles from where they met yesterday then the bus which had head start of 1 hr traveled 24 miles in 1 hr. Thus its speed is 24 miles. The speed of 2nd bus is also 24 (since both bus travels at constant speed).. Thus both bus travels for 4 hrs hence distance traveled by 1 bus =24*4

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A. 48 B. 72 C. 96 D. 120 E. 192

Bunuel,

This question is quite confusing. Can you explain your logic as to why you thought the busses were going in the same direction on the return trip? The question says "The following day the buses do the return trip at the same constant speed." Well if a bus leaves City M to go to City N and another leaves City N to go to City M, the "return trip" must mean that each bus returns to the point of origin; City M and City N respectively, and if that happens after meeting between City M and City N, they can never meet again, which would make this problem impossible to solve. Sorry, I am just so confused..

I think this question is good and helpful. However," The following day the buses do the return trip at the same constant speed." is confusing as they go in opposite directions so they do not meet. I think rewording is necessary.

I think this question is good and helpful. However," The following day the buses do the return trip at the same constant speed." is confusing as they go in opposite directions so they do not meet. I think rewording is necessary.

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A. 48 B. 72 C. 96 D. 120 E. 192

The buses travel at the same constant speed. It would take one bus to travel 4 hours to cover the distance between the cities \(M\) and \(N\) (two buses drove for 2 hours each). We need to find the speed of the bus. If the first bus was delayed by 24 minutes and the second one left 36 minutes earlier, it makes the second bus \(24+36=60\) minutes ahead of the first bus.

The meeting point was 24 miles away on this second day. We know the distance difference between the two meeting points, but we also need to find difference in time those 24 miles were covered. If the second bus drove for 1 hour before the first one departed, each of them had to go for another 1.5 hour to meet (1.5 hour + 1.5 hour + 1 hour). The second bus traveled for 2.5 hours and the first one for 1.5 hour. Therefore the meeting point on the second day was 30 minutes away from that of the previous day.

So the second bus covered 24 miles in 30 minutes, which gives us the speed of the bus, 48 mph. We can calculate the distance as we already know the speed:

\(4*48=192\) miles.

Alternative Explanation

Say the distance between the cities is \(d\) miles.

Since both buses travel at the same constant speed and leave the cities at the same time then they meet at the halfway, so the first meeting point \(P\), is \(\frac{d}{2}\) miles away from \(M\) (and \(N\)).

Next, since the buses meet in 2 hours then the total time to cover \(d\) miles for each bus is 4 hours.

Now, on the second day one bus traveled alone for 1 hour (36min +24min), hence covered \(0.25d\) miles, and \(0.75d\) miles is left to cover.

The buses meet again at the halfway of \(0.75d\), which is 24 miles from \(\frac{d}{2}\):

Hence, \(\frac{d}{2}-24=\frac{0.75d}{2}\), which gives \(d=192\) miles.

Answer: E

Sorry, I am still unable to understand direction of the travel. In beginning both buses move towards each other and meet at point P In return journey they move away from each other...so I am not getting how they meet again? I think I completely missed what question is talking about.

A bus leaves city \(M\) and travels to city \(N\) at a constant speed, at the same time another bus leaves city \(N\) and travels to city \(M\) at the same constant speed. After driving for 2 hours they meet at point \(P\). The following day the buses do the return trip at the same constant speed. One bus is delayed 24 minutes and the other leaves 36 minutes earlier. If they meet 24 miles from point \(P\), what is the distance between the two cities?

A. 48 B. 72 C. 96 D. 120 E. 192

The buses travel at the same constant speed. It would take one bus to travel 4 hours to cover the distance between the cities \(M\) and \(N\) (two buses drove for 2 hours each). We need to find the speed of the bus. If the first bus was delayed by 24 minutes and the second one left 36 minutes earlier, it makes the second bus \(24+36=60\) minutes ahead of the first bus.

The meeting point was 24 miles away on this second day. We know the distance difference between the two meeting points, but we also need to find difference in time those 24 miles were covered. If the second bus drove for 1 hour before the first one departed, each of them had to go for another 1.5 hour to meet (1.5 hour + 1.5 hour + 1 hour). The second bus traveled for 2.5 hours and the first one for 1.5 hour. Therefore the meeting point on the second day was 30 minutes away from that of the previous day.

So the second bus covered 24 miles in 30 minutes, which gives us the speed of the bus, 48 mph. We can calculate the distance as we already know the speed:

\(4*48=192\) miles.

Alternative Explanation

Say the distance between the cities is \(d\) miles.

Since both buses travel at the same constant speed and leave the cities at the same time then they meet at the halfway, so the first meeting point \(P\), is \(\frac{d}{2}\) miles away from \(M\) (and \(N\)).

Next, since the buses meet in 2 hours then the total time to cover \(d\) miles for each bus is 4 hours.

Now, on the second day one bus traveled alone for 1 hour (36min +24min), hence covered \(0.25d\) miles, and \(0.75d\) miles is left to cover.

The buses meet again at the halfway of \(0.75d\), which is 24 miles from \(\frac{d}{2}\):

Hence, \(\frac{d}{2}-24=\frac{0.75d}{2}\), which gives \(d=192\) miles.

Answer: E

Sorry, I am still unable to understand direction of the travel. In beginning both buses move towards each other and meet at point P In return journey they move away from each other...so I am not getting how they meet again? I think I completely missed what question is talking about.

Alternative solution: as 2 buses meat at the middle by driving 2 hours each. It means that the whole time each buses spends is 4 hours. If one bus delayed 24 min and the other leaves 36 min earlier, it means that the 2nd bus drives 1 hour alone. In 1 hour it will cover 1/4 of the distance. Then the rest of the distance 2 buses travel together and they will meet in the middle of the rest distance, thus 1-1/4=3/4 middle is 3/4/2=3/8. The distance between two points will be 1/2-3/8=1/8 which equals to 24 miles. Thus the whole distance is 8*24=192 miles.

I think this is a high-quality question and I don't agree with the explanation. In second scenario, when one bus is delayed for 24 minutes and another bus leaves 36 minutes , it is clear that one bus has traveled for one hour extra before they meet. Had they traveled for same time they would meet at P but they meet 24 miles from point P. This means this distance is traveled in one hour by one of the bus that has traveled one hour more than other by the time they meet. So speed of bus would be 24 miles per hour. since it takes 4 hours so distance would be 96 miles.